The following information can be accessed with the help of such resonance experiments. (i) Electrical structure of point defects by looking at the absorption in a thin structure. (ii) The line width with the movement of spin or surroundings isn't changed. (iii) The distribution of the magnetic field in solid by looking at the of the resonance line position (chemical shift and etc.). (iv) Collective spin excitations. Ferromagnetic Resonance-Theory and Applications 2 The atoms of ferromagnetic coupling originate from the spins of d-electrons. The size of μ permanent atomic dipoles create spontaneously magnetized. According to the shape of dipoles materials can be ferromagnetic, antiferromagnetic, diamagnetic, paramagnetic and etc. Ferromagnetic resonance (FMR) technique was initially applied to ferromagnetic materials, all magnetic materials and unpaired electron systems. Basically, it is analogous to the electron paramagnetic resonance (EPR). The EPR technique gives better results at unpaired electron systems. The FMR technique depends on the geometry of the sample at hand. The demagnetization field is observed where the sample geometry is active. The resonance area of the sample depends on the properties of material. The FMR technique is advantageous because it does not cause damage to materials. Also, it allows a three dimensional analysis of samples. The FMR occurs at high field values while EPR occurs at low magnetic field values. Also, line-width of ferromagnetic materials is large according to paramagnetic materials. Exchange interaction energy between unpaired electron spins that contribute to the ferromagnetism causes the line narrowing. So, ferromagnetic resonance lines appear sharper than expected. The FMR studies have been increased since the EPR was discovered in
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.