Abstract. We present a method which enables one to construct isospectral objects, such as quantum graphs and drums. One aspect of the method is based on representation theory arguments which are shown and proved. The complementary part concerns techniques of assembly which are both stated generally and demonstrated. For that purpose, quantum graphs are grist to the mill. We develop the intuition that stands behind the construction as well as the practical skills of producing isospectral objects. We discuss the theoretical implications which include Sunada's theorem of isospectrality [2] arising as a particular case of this method. A gallery of new isospectral examples is presented and some known examples are shown to result from our theory.
We present a method for constructing families of isospectral systems, using linear representations of finite groups. We focus on quantum graphs, for which we give a complete treatment. However, the method presented can be applied to other systems such as manifolds and two-dimensional drums. This is demonstrated by reproducing some known isospectral drums, and new examples are obtained as well. In particular, Sunada's method (Ann. Math. 121, 169-186, 1985) is a special case of the one presented.
We establish new characterizations of primitive elements and free factors in free groups, which are based on the distributions they induce on finite groups. For every finite group G G , a word w w in the free group on k k generators induces a word map from G k G^{k} to G G . We say that w w is measure preserving with respect to G G if given uniform distribution on G k G^{k} , the image of this word map distributes uniformly on G G . It is easy to see that primitive words (words which belong to some basis of the free group) are measure preserving w.r.t. all finite groups, and several authors have conjectured that the two properties are, in fact, equivalent. Here we prove this conjecture. The main ingredients of the proof include random coverings of Stallings graphs, algebraic extensions of free groups, and M枚bius inversions. Our methods yield the stronger result that a subgroup of F k \mathbf {F}_{k} is measure preserving if and only if it is a free factor. As an interesting corollary of this result we resolve a question on the profinite topology of free groups and show that the primitive elements of F k \mathbf {F}_{k} form a closed set in this topology.
In graph theory there are intimate connections between the expansion properties of a graph and the spectrum of its Laplacian. In this paper we define a notion of combinatorial expansion for simplicial complexes of general dimension, and prove that similar connections exist between the combinatorial expansion of a complex, and the spectrum of the high dimensional Laplacian defined by Eckmann. In particular, we present a Cheeger-type inequality, and a high-dimensional Expander Mixing Lemma. As a corollary, using the work of Pach, we obtain a connection between spectral properties of complexes and Gromov's notion of geometric overlap. Using the work of Gunder and Wagner, we give an estimate for the combinatorial expansion and geometric overlap of random Linial-Meshulam complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.