-Vasopressinstimulated insertion of the aquaporin 2 (AQP2) water channel into the plasma membrane of kidney collecting duct principal cells is a key event in the urinary concentrating mechanism. The paradigm for vasopressin-receptor signaling involves cAMP-mediated protein kinase A activation, which results in the functionally critical phosphorylation of AQP2 on amino acid serine 256. We previously showed that a parallel cGMP-mediated signaling pathway also leads to AQP2 membrane insertion in AQP2-transfected LLC-PK 1 (LLC-AQP2) cells and in outer medullary collecting duct principal cells in situ (Bouley R, Breton S, Sun T, McLaughlin M, Nsumu NN, Lin HY, Ausiello DA, and Brown D. J Clin Invest 106: [1115][1116][1117][1118][1119][1120][1121][1122][1123][1124][1125][1126] 2000). In the present report, we show by immunofluorescence microscopy, and Western blotting of plasma membrane fractions, that 45-min exposure of LLC-AQP2 cells to the cGMP phosphodiesterase type 5 (PDE5) inhibitors sildenafil citrate (Viagra) or 4-{[3',4'-methylene-dioxybenzyl]amino}-6-methoxyquinazoline elevates intracellular cGMP levels and results in the plasma membrane accumulation of AQP2; i.e., they mimic the vasopressin effect. Importantly, our data also show that acute exposure to PDE5 inhibitors for 60 min induces apical accumulation of AQP2 in kidney medullary collecting duct principal cells both in tissue slices incubated in vitro as well as in vivo after intravenous injection of Viagra into rats. These data suggest that AQP2 membrane insertion can be induced independently of vasopressin-receptor activation by activating a parallel cGMP-mediated signal transduction pathway with cGMP PDE inhibitors. These results provide proof-of-principle that pharmacological activation of vasopressin-independent, cGMP signaling pathways could aid in the treatment of those forms of nephrogenic diabetes insipidus that are due to vasopressin-2 receptor dysfunction. phosphodiesterase type 5; cAMP; nephrogenic diabetes insipidus; vasopressin; LLC-PK1 cells; Brattleboro rats; vasopressin receptor type 2 A CONSIDERABLE AMOUNT OF WORK has shown that aquaporin (AQP) water channels are important for urinary concentration and body fluid homeostasis. AQP2 is expressed in collecting duct principal cells, where its plasma membrane expression is stimulated by the antidiuretic hormone vasopressin (VP) (6,7,13,45,54). The most widely understood pathway leading to AQP2 membrane accumulation is via vasopressin type 2 receptor (V2R) stimulation of adenylyl cyclase, cAMP-mediated activation of protein kinase A, and phosphorylation of AQP2 on amino acid serine 256. This phosphorylation event is necessary for VP-stimulated membrane accumulation of AQP2 (19,30). Most cases of hereditary nephrogenic diabetes insipidus (NDI) result from functionally inactivating mutations in the V2R, which leads to the X-linked form of NDI. The rarer autosomal form of the disease is due to mutations in the AQP2 protein itself (2,8,14,25,44,61,62). Because patients with V2R mutations probabl...
Smad4, the common Smad, is central for transforming growth factor (TGF)-beta superfamily ligand signaling. Smad4 has been shown to be constitutively phosphorylated (Nakao A, Imamura T, Souchelnytskyi S, Kawabata M, Ishisaki A, Oeda E, Tamaki K, Hanai J, Heldin C-H, Miyazono K, and ten Dijke P. EMBO J 16: 5353-5362, 1997), but the site(s) of phosphorylation, the kinase(s) that performs this phosphorylation, and the significance of the phosphorylation of Smad4 are currently unknown. This report describes the identification of a consensus ERK phosphorylation site in the linker region of Smad4 at Thr276. Our data show that ERK can phosphorylate Smad4 in vitro but not Smad4 with mutated Thr276. Flag-tagged Smad4-T276A mutant protein accumulates less efficiently in the nucleus after stimulation by TGF-beta and is less efficient in generating a transcriptional response than Smad4 wild-type protein. Tryptic phosphopeptide mapping identified a phosphopeptide in Smad4 wild-type protein that was absent in phosphorylated Smad4-T276A mutant protein. Our results suggest that MAP kinase can phosphorylate Thr276 of Smad4 and that phosphorylation can lead to enhanced TGF-beta-induced nuclear accumulation and, as a consequence, enhanced transcriptional activity of Smad4.
Alternative pre-mRNA splicing is a major mechanism by which the proteomic diversity of eukaryotic genomes is amplified. Much akin to neuropsychiatric disorders themselves, alternative splicing events can be influenced by genetic, developmental, and environmental factors. Here we review the evidence that abnormalities of splicing may contribute to the liability toward these disorders. First, we introduce the phenomenon of alternative splicing and describe the processes involved in its regulation. We then review the evidence for specific splicing abnormalities in a wide range of neuropsychiatric disorders, including psychotic disorders (schizophrenia), affective disorders (bipolar disorder and major depressive disorder), suicide, substance abuse disorders (cocaine abuse and alcoholism), and neurodevelopmental disorders (autism). Next, we provide a theoretical reworking of the concept of “gene-focused” epidemiologic and neurobiologic investigations. Lastly, we suggest potentially fruitful lines for future research that should illuminate the nature, extent, causes, and consequences of alternative splicing abnormalities in neuropsychiatric disorders.
Prenatal exposure to moderate doses of valproic acid (VPA) produces brainstem abnormalities, while higher doses of this teratogen elicit social deficits in the rat. In this pilot study, we examined effects of prenatal exposure to a moderate-dose of VPA on behavior and on transcriptomic expression in three brain regions that mediate social behavior. Pregnant Long-Evans rats were injected with 350 mg/kg VPA or saline on gestational day 13. A modified social-interaction test was used to assess social behavior and social preference/avoidance during early and late adolescence and in adulthood. VPA-exposed animals demonstrated more social investigation and play fighting than control animals. Social investigation, play fighting, and contact behavior also differed as a function of age; the frequency of these behaviors increased in late adolescence. Social preference and locomotor activity under social circumstances were unaffected by treatment or age. Thus, a moderate prenatal dose of VPA produces behavioral alterations that are substantially different from the outcomes that occur following exposure to a higher dose. At adulthood, VPA-exposed subjects exhibited transcriptomic abnormalities in three brain regions: anterior amygdala, cerebellar vermis, and orbitofrontal cortex. A common feature among the proteins encoded by the dysregulated genes was their ability to be modulated by acetylation. Analysis of the expression of individual exons also revealed that genes involved in post-translational modification and epigenetic regulation had particular isoforms that were ubiquitously dysregulated across brain regions. The vulnerability of these genes to the epigenetic effects of VPA may highlight potential mechanisms by which prenatal VPA exposure alters the development of social behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.