Compute and Forward (CF) is a promising relaying scheme which, instead of decoding single messages or forwarding/amplifying information at the relay, decodes linear combinations of the simultaneously transmitted messages. The current literature includes several coding schemes and results on the degrees of freedom in CF, yet for systems with a fixed number of transmitters and receivers. It is unclear, however, how CF behaves at the limit of a large number of transmitters.In this paper, we investigate the performance of CF in that regime. Specifically, we show that as the number of transmitters grows, CF becomes degenerated, in the sense that a relay prefers to decode only one (strongest) user instead of any other linear combination of the transmitted codewords, treating the other users as noise. Moreover, the sum-rate tends to zero as well. This makes scheduling necessary in order to maintain the superior abilities CF provides. Indeed, under scheduling, we show that non-trivial linear combinations are chosen, and the sum-rate does not decay, even without state information at the transmitters and without interference alignment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.