Phytoremediation is a method in which plants, soil microorganisms, amendments, and agronomic techniques interact to enhance contaminant degradation. We hypothesized that bermudagrass (Cynodon dactylon L) and an appropriate amount of N fertilizer would improve remediation of pyrenecontaminated Captina silt loam soil. The soil was contaminated with 0 or 1,000 mg pyrene/kg of soil and amended with urea at pyrene-C:urea-N (C:N) ratios of 4.5:1, 9:1, 18:1, or unamended (36:1). Either zero, one, two, or three bermudagrass sprigs were planted per pot and −33 kPa moisture potential was maintained. Pyrene concentrations, inorganic-N levels, shoot and root parameters, and pyrene degrader microbial numbers were measured following a 100-day greenhouse study. At a C:N ratio of 4.5:1, the presence of plants increased pyrene biodegradation from 31% for the no plant treatment to a mean of 62% for the one, two, and three plant treatments. With no plants and C:N ratios of 4.5:1, 9:1, 18:1, and 36:1, the mean pyrene biodegradation was 31, 52, 77, and 88%, respectively, indicating that increased inorganic-N concentration in the soil reduced pyrene degradation in the treatments without plants. Additionally, none of the one, two, or three plant treatments at any of the C:N ratios were different with a mean pyrene degradation value of 69% after 100 days. Pyrene resulted in reduced shoot and root biomass, root length, and root surface area, but increased root diameter. The pyrene degrading microbial numbers were approximately 10,000-fold higher in the pyrenecontaminated soil compared to the control. At the highest N rate, bermudagrass increased pyrene degradation compared to the no plant treatment, however, in the unvegetated treatment pyrene degradation was reduced with added N.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.