Cigarette smoking by the male partner adversely affects assisted reproductive techniques, suggesting that it may damage sperm chromatin/DNA and consequently embryo development. The effects of graded concentrations of research cigarettes smoke extract (CSE) on motility, mitochondrial membrane potential (MMP), chromatin integrity and apoptosis were evaluated in spermatozoa obtained from 13 healthy, non-smoking men with normal sperm parameters, by flow cytometry. CSE suppressed sperm motility in a concentration- and time-dependent manner and increased the number of spermatozoa with low MMP, the main source of energy for sperm motility. In addition, CSE had a detrimental effect on sperm chromatin condensation and apoptosis. Indeed, it increased the number of spermatozoa with phosphatidylserine externalization, an early apoptotic sign, and fragmented DNA, a late apoptotic sign, in a concentration- and time-dependent manner. These effects of CSE were of similar or even greater magnitude to those obtained following incubation with tumour necrosis factor-alpha, a cytokine known for its negative impact on sperm function, used as positive control. Since transmission of smoking-induced sperm DNA alterations has been found in pre-implantation embryos, and this may predispose offspring to a greater risk of malformations, cancer and genetic diseases, men seeking to father a child are recommended to give up smoking.
The multifactorial pathological condition, that is, severe low sperm motility is a frequent cause of infertility. However, mechanisms underlying the development of this condition are not completely understood. Single abnormalities have been reported in sperm of patients with asthenozoospermia. In this study, we characterized, in 22 normozoospermic men and in 37 patients with asthenozoospermia, biochemical, molecular and genomic abnormalities that frequently occur in sperm of patients with asthenozoospermia. We evaluated a panel of sperm biomarkers that may affect the motility and fertilizing ability of sperm of patients with severe asthenozoospermia. Since reactive oxygen species (ROS) production is involved in the pathogenesis of such sperm abnormalities, we determined the association between ROS production and sperm abnormalities. High percentage of patients with severe asthenozoospermia showed increased basal and stimulated ROS production. Moreover, these patients showed increased mitochondrial DNA (mtDNA) copy number but decreased mtDNA integrity and they were associated with elevated ROS levels. Furthermore, mitochondrial membrane potential was also significantly decreased and again associated with high ROS production in these patients. However, the rate of nuclear DNA fragmentation was increased only in less than one-fifth of these patients. An important cohort of these patients showed multiple identical biochemical, molecular and genomic abnormalities, which are typical manifestations of oxidative stress. The most frequent association was found in patients with high ROS levels, increased mtDNA copy number and decreased integrity, and low MMP. A smaller cohort of the aforementioned patients also showed nDNA fragmentation. Therefore, patients with asthezoospermia likely present reduced fertilizing potential because of such composed abnormalities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.