The applications of serology tests to the virus SARS-CoV-2 are diverse, ranging from diagnosing COVID-19, understanding the humoral response to this disease, estimating its prevalence in a population, to modeling...
Biomarkers are relevant indicators of the physiological state of an individual.Although biomarkers can be found in diseased tissue and different biofluids, sampling from blood plasma is relatively easy and less invasive. Among the molecular biomarkers that can be found circulating in plasma are proteins, metabolites, nucleic acids, and exosomes. Some of these plasma-circulating biomarkers are now employed for patient stratification in a broad range of diseases with high sensitivity and specificity and are useful in early diagnosis, initial risk assessment, and therapy selection. However, there is a pressing need to develop novel approaches for biomarker analysis that can be translated into clinical or other settings without complex methodologies or instrumentation. Microfluidics has been touted as a promising technology to carry out this task because it offers high-throughput, automation, multiplexed detection, and portability, possibly overcoming the bottleneck that prevent the translation of novel biomarkers to the point-of-care (POC). Here, we provide a review of the microfluidic systems that have been engineered to detect circulating molecular biomarkers in blood plasma. We also review the different microfluidic approaches for plasma enrichment, which are now being integrated with microfluidic-based biomarker analyzers. Such integration should lead to
We present a simple and low-cost positioner fixture to improve the fabrication resolution of acrylic microchannels using conventional milling machines. The positioner fixture is a mechatronic platform that consists of...
Although real‐time quantitative reverse transcription polymerase chain reaction (RT‐qPCR) is the gold standard for detecting the virus severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) and other pathogens, the coronavirus disease 2019 (COVID‐19) pandemic has highlighted the scarcity of instruments, devices, and reagents for polymerase chain reaction (PCR) testing in constrained settings. At least for under‐resourced countries, it has become critical to deploy instruments that can be rapidly constructed and satisfy this demand. Instead of separating the optical system from the thermal module (typical of qPCR thermocyclers), we report a portable Hybrid Opto‐Thermocycler—dubbed HybOT Cycler—that takes advantage of the high‐temperature tolerances (>100 °C) of electronic and optical components to combine thermal control, illumination, and fluorescence detection into a highly integrated hybrid module. This simple configuration allowed us to reduce the overall number of components, thus simplifying its assembly and reducing the instrument size. The HybOT Cycler is wirelessly controlled from an application installed in a tablet. PCR assays are carried out in a bubble‐free microfluidic device that can be easily replicated from an acrylic mold. Using the HybOT Cycler, down to 100 copies/µL of genetic material of the virus SARS‐CoV‐2 with 95% sensitivity and 100% specificity is detected. The HybOT Cycler can assist in diagnosing SARS‐CoV‐2 and other pathogens in resource‐poor settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.