Heart failure (HF) is a major challenge worldwide and needs continuous monitoring of patients even after hospital discharge. This case report summarises the data collected and experience gained from the first usage of an automated, point-of-care device (Heartfelt device) in a patient’s home in the UK. The device monitors the onset of peripheral oedema and alerts clinicians if an increase in volume outside an expected normal range for the patient is detected. This may provide a reliable method of remotely and automatically monitoring HF patients in the home for those who do not reliably use weighing scales. The device successfully provided data for about 15 months and generated alerts in advance, which supported decisions for the patient’s care. The rate of data acquisition was very high and consistent throughout this period. The patient was satisfied with the device and agreed that it helped in her decision to seek medical attention.
Background and Objectives Peripheral edema, change in foot volume, is a marker of congestion which is regularly assessed in routine clinical care. A novel video and Artificial Intelligence (AI)-based solution used to measure anatomical parameters, including volume and foot length, Heartfelt HF-1, is compared to the laboratory gold standard (water displacement) and a medical disposable measuring tape. Design, Setting, Participants, and Measurements 58 healthy volunteers were measured with the Heartfelt device; 22 were also measured with the water displacement method and 19 with the medical tape. Bland–Altman analysis was performed for both volumes and foot lengths. Left/right foot differences provided covariance-corrected standard error of measurement (ccSEM) and minimum detectable difference (MDD) for each measurement method. Results Heartfelt device measured volumes displayed excellent correlation to the gold standard (water displacement), with Bland–Altman bias of +32mL ±81mL (1 std.dev). Clinically important change in foot volume is approximately 13%. Water displacement yielded ccSEM of ± 32.1mL and MDD of 90mL (6.7% of average foot volume), while the Heartfelt device measurements yielded ccSEM of ±12.6mL and MDD of 35.3mL (2.6% of average foot volume). The majority of differences were attributable to manual positioning of the patient foot in the waterbath. Conclusion This study finds that in clinical and non-clinical settings, the Heartfelt device measures foot volume and length more precisely than either the water displacement technique or manual foot length measurements using a medical disposable tape, while having an excellent agreement with these methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.