This article deals with the proper numerical simulation of the response presented by an instrumented damaged-retrofitted building using a low computational cost linear-elastic model, using effective stiffness for its reinforced concrete structural members. The purpose is to identify the most appropriate criteria and considerations and to validate them against the actual behavior of the building registered during real earthquakes. Relevant structural aspects like concrete elastic modulus and soil–structure interaction effects are determined experimentally. Special attention is paid to select appropriate techniques to model the complex geometry of the North-South facades wall elements and their related coupling beams. Finally, time-history analyses of 20 March 2012 earthquake (service conditions demand) and 19 September 2017 earthquake (design conditions demand) are performed, both considering and ignoring the soil–structure interaction effects. Results point out that commonly adopted simplifications in numerical models of buildings must be correctly implemented to satisfactorily simulate their earthquake response.
The increasing use of the tunnel boring machines (TBMs) has entailed their own evolution and the improvement of the construction processes applied, allowing the construction of tunnels on more complex hydro-geological conditions. These new drilling facilities imply that higher ground and water pressures have to be resisted by the structural lining, turning its design into a key item in all current tunnel projects. TBMs construction process is mainly associated to precast concrete segmental tunnel linings, which are consisted of concrete rings sequentially placed as the tunnel drilling advances. Despite segmental tunnel linings are widely used, their structural response presents significant uncertainties due to the particular configuration on multiple precast pieces and the evolutionary construction process applied. The improvement and optimization of segmental tunnel linings, necessary to obtain safer structures at a lower cost, requires a significant advance in the knowledge of their structural response and about the appropriate techniques to properly reproduce it. This PhD thesis present the mechanisms and phenomena involved in the structural response of precast concrete segmental tunnel linings, detailing numerical modeling strategies to properly simulate them. The integration of all these techniques in a unique model allows the analysis of a real tunnel lining subjected to different scenarios, determining the influence and relevance of the main parameters defining a tunnel and its structural lining. Present research departs from an innovative in situ test carried out at Line 9 subway tunnel in Barcelona. The treatment and analysis of the obtained data provides experimental evidences about the structural response of segmental tunnel linings and the main involved mechanisms and phenomena. Different numerical simulation strategies are developed in order to properly reproduce such mechanism and phenomena, achieving a reliable simulation of an isolated ring response. The longitudinal response of the segmental concrete linings is obtained through the detailed study of the construction process applied and the ground-structure interaction mechanisms. The knowledge of the longitudinal force present at a segmental tunnel lining is of paramount importance in order to determine the interaction degree between adjacent rings and the consequent three-dimensionality of the lining response. Finally, the numerical simulation of a real tunnel section subjected to different scenarios of load and boundary conditions determines the influence of the three-dimensional effects on segmental concrete linings response, concluding about its structural implications in respect to the isolated ring approach usually employed in design processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.