Aging is considered as the property of the elements of a system to be less prone to change states as they get older. We incorporate aging into the noisy voter model, a stochastic model in which the agents modify their binary state by means of noise and pair-wise interactions. Interestingly, due to aging the system passes from a finite-size discontinuous transition between ordered (ferromagnetic) and disordered (paramagnetic) phases to a second order phase transition, well defined in the thermodynamic limit, belonging to the Ising universality class. We characterize it analytically by finding the stationary solution of an infinite set of mean field equations. The theoretical predictions are tested with extensive numerical simulations in low dimensional lattices and complex networks. We finally employ the aging properties to understand the symmetries broken in the phase transition.
Links in many real-world networks activate and deactivate in correspondence to the sporadic interactions between the elements of the system. The activation patterns may be irregular or bursty and play an important role on the dynamics of processes taking place in the network. Information or disease spreading in networks are paradigmatic examples of this situation. Besides burstiness, several correlations may appear in the process of link activation: memory effects imply temporal correlations, but also the existence of communities in the network may mediate the activation patterns of internal an external links. Here we study the competition of topological and temporal correlations in link activation and how they affect the dynamics of systems running on the network. Interestingly, both types of correlations by separate have opposite effects: one (topological) delays the dynamics of processes on the network, while the other (temporal) accelerates it. When they occur together, our results show that the direction and intensity of the final outcome depends on the competition in a non trivial way.
We present an analytical framework to study the first-passage (FP) and first-return (FR) distributions for the broad family of models described by the one-dimensional Fokker-Planck equation in finite domains, identifying general properties of these distributions for different classes of models. When in the Fokker-Planck equation the diffusion coefficient is positive (nonzero) and the drift term is bounded, as in the case of a Brownian walker, both distributions may exhibit a power-law decay with exponent −3/2 for intermediate times. We discuss how the influence of an absorbing state changes this exponent. The absorbing state is characterized by a vanishing diffusion coefficient and/or a diverging drift term. Remarkably, the exponent of the Brownian walker class of models is still found, as long as the departure and arrival regions are far enough from the absorbing state, but the range of times where the power law is observed narrows. Close enough to the absorbing point, though, a new exponent may appear. The particular value of the exponent depends on the behavior of the diffusion and the drift terms of the Fokker-Planck equation. We focus on the case of a diffusion term vanishing linearly at the absorbing point. In this case, the FP and FR distributions are similar to those of the voter model, characterized by a power law with exponent −2. As an illustration of the general theory, we compare it with exact analytical solutions and extensive numerical simulations of a two-parameter voter-like family models. We study the behavior of the FP and FR distributions by tuning the importance of the absorbing points throughout changes of the parameters. Finally, the possibility of inferring relevant information about the steady-sate probability distribution of a model from the FP and FR distributions is addressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.