BackgroundComputational models based in Quantitative-Structure Activity Relationship (QSAR) methodologies are widely used tools for predicting the biological properties of new compounds. In many instances, such models are used as a routine in the industry (e.g. food, cosmetic or pharmaceutical industry) for the early assessment of the biological properties of new compounds. However, most of the tools currently available for developing QSAR models are not well suited for supporting the whole QSAR model life cycle in production environments.ResultsWe have developed eTOXlab; an open source modeling framework designed to be used at the core of a self-contained virtual machine that can be easily deployed in production environments, providing predictions as web services. eTOXlab consists on a collection of object-oriented Python modules with methods mapping common tasks of standard modeling workflows. This framework allows building and validating QSAR models as well as predicting the properties of new compounds using either a command line interface or a graphic user interface (GUI). Simple models can be easily generated by setting a few parameters, while more complex models can be implemented by overriding pieces of the original source code. eTOXlab benefits from the object-oriented capabilities of Python for providing high flexibility: any model implemented using eTOXlab inherits the features implemented in the parent model, like common tools and services or the automatic exposure of the models as prediction web services. The particular eTOXlab architecture as a self-contained, portable prediction engine allows building models with confidential information within corporate facilities, which can be safely exported and used for prediction without disclosing the structures of the training series.ConclusionsThe software presented here provides full support to the specific needs of users that want to develop, use and maintain predictive models in corporate environments. The technologies used by eTOXlab (web services, VM, object-oriented programming) provide an elegant solution to common practical issues; the system can be installed easily in heterogeneous environments and integrates well with other software. Moreover, the system provides a simple and safe solution for building models with confidential structures that can be shared without disclosing sensitive information.Electronic supplementary materialThe online version of this article (doi:10.1186/s13321-015-0058-6) contains supplementary material, which is available to authorized users.
Early prediction of safety issues in drug development is at the same time highly desirable and highly challenging. Recent advances emphasize the importance of understanding the whole chain of causal events leading to observable toxic outcomes. Here we describe an integrative modeling strategy based on these ideas that guided the design of eTOXsys, the prediction system used by the eTOX project. Essentially, eTOXsys consists of a central server that marshals requests to a collection of independent prediction models and offers a single user interface to the whole system. Every of such model lives in a self-contained virtual machine easy to maintain and install. All models produce toxicity-relevant predictions on their own but the results of some can be further integrated and upgrade its scale, yielding in vivo toxicity predictions. Technical aspects related with model implementation, maintenance and documentation are also discussed here. Finally, the kind of models currently implemented in eTOXsys is illustrated presenting three example models making use of diverse methodology (3D-QSAR and decision trees, Molecular Dynamics simulations and Linear Interaction Energy theory, and fingerprint-based QSAR).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.