Histidine-rich glycoprotein (HRG) is a 75-kDa heparin-binding plasma protein implicated in the regulation of tumor growth and vascularization. In this study, we show that hrg À/À mice challenged with fibrosarcoma or pancreatic carcinoma grow larger tumors with increased metastatic properties. Compared with wild-type mice, fibrosarcomas in hrg À/À mice were more hypoxic, necrotic, and less perfused, indicating enhanced vessel abnormalization. HRG deficiency was associated with a suppressed antitumor immune response, with both increased infiltration of M2 marker-expressing macrophages and decreased infiltration of dendritic cells and cytotoxic T cells. Analysis of transcript expression in tumor-associated as well as peritoneal macrophages from hrg À/À mice revealed an increased expression of genes associated with a proangiogenic and immunoinhibitory phenotype. In accordance, expression arrays conducted on HRG-treated peritoneal macrophages showed induction of genes involved in extracellular matrix biology and immune responsiveness. In conclusion, our findings show that macrophages are a direct target of HRG. HRG loss influences macrophage gene regulation, leading to excessive stimulation of tumor angiogenesis, suppression of tumor immune response, and increased tumor growth and metastatic spread. Cancer Res; 72(8); 1953-63. Ó2012 AACR.
Histidine-rich glycoprotein (HRG) is implicated in tumor growth and metastasis by regulation of angiogenesis and inflammation. HRG is produced by hepatocytes and carried to tissues via the circulation. We hypothesized that HRG's tissue distribution and turnover may be mediated by inflammatory cells. Biodistribution parameters were analyzed by injection of radiolabeled, bioactive HRG in the circulation of healthy and tumor-bearing mice. 125I-HRG was cleared rapidly from the blood and taken up in tissues of healthy and tumor-bearing mice, followed by degradation, to an increased extent in the tumor-bearing mice. Steady state levels of HRG in the circulation were unaffected by the tumor disease both in murine tumor models and in colorectal cancer (CRC) patients. Importantly, stromal pools of HRG, detected in human CRC microarrays, were associated with inflammatory cells. In agreement, microautoradiography identified 125I-HRG in blood vessels and on CD45-positive leukocytes in mouse tissues. Moreover, radiolabeled HRG bound in a specific, heparan sulfate-independent manner, to differentiated human monocytic U937 cells in vitro. Suppression of monocyte differentiation by systemic treatment of mice with anti-colony stimulating factor-1 neutralizing antibodies led to reduced blood clearance of radiolabeled HRG and to accumulation of endogenous HRG in the blood. Combined, our data show that mononuclear phagocytes have specific binding sites for HRG and that these cells are essential for uptake of HRG from blood and distribution of HRG in tissues. Thereby, we confirm and extend our previous report that inflammatory cells mediate the effect of HRG on tumor growth and metastatic spread.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.