Alzheimer's disease (AD) is a detrimental neurodegenerative disease with no effective treatments. Due to cellular heterogeneity, defining the roles of immune cell subsets in AD onset and progression has been challenging. Using transcriptional single-cell sorting, we comprehensively map all immune populations in wild-type and AD-transgenic (Tg-AD) mouse brains. We describe a novel microglia type associated with neurodegenerative diseases (DAM) and identify markers, spatial localization, and pathways associated with these cells. Immunohistochemical staining of mice and human brain slices shows DAM with intracellular/phagocytic Aβ particles. Single-cell analysis of DAM in Tg-AD and triggering receptor expressed on myeloid cells 2 (Trem2) Tg-AD reveals that the DAM program is activated in a two-step process. Activation is initiated in a Trem2-independent manner that involves downregulation of microglia checkpoints, followed by activation of a Trem2-dependent program. This unique microglia-type has the potential to restrict neurodegeneration, which may have important implications for future treatment of AD and other neurodegenerative diseases. VIDEO ABSTRACT.
Microglia, the resident myeloid cells of the central nervous system, play important roles in life-long brain maintenance and in pathology. Despite their importance, their regulatory dynamics during brain development have not been fully elucidated. Using genome-wide chromatin and expression profiling coupled with single-cell transcriptomic analysis throughout development, we found that microglia undergo three temporal stages of development in synchrony with the brain--early, pre-, and adult microglia--which are under distinct regulatory circuits. Knockout of the gene encoding the adult microglia transcription factor MAFB and environmental perturbations, such as those affecting the microbiome or prenatal immune activation, led to disruption of developmental genes and immune response pathways. Together, our work identifies a stepwise microglia developmental program integrating immune response pathways that may be associated with several neurodevelopmental disorders.
Systemic immune suppression may curtail the ability to mount the protective, cell-mediated immune responses that are needed for brain repair. By using mouse models of Alzheimer's disease (AD), we show that immune checkpoint blockade directed against the programmed death-1 (PD-1) pathway evokes an interferon (IFN)-γ-dependent systemic immune response, which is followed by the recruitment of monocyte-derived macrophages to the brain. When induced in mice with established pathology, this immunological response leads to clearance of cerebral amyloid-β (Aβ) plaques and improved cognitive performance. Repeated treatment sessions were required to maintain a long-lasting beneficial effect on disease pathology. These findings suggest that immune checkpoints may be targeted therapeutically in AD.
During ageing, microglia acquire a phenotype that may negatively affect brain function. Here we show that ageing microglial phenotype is largely imposed by interferon type I (IFN-I) chronically present in aged brain milieu. Overexpression of IFN-β in the CNS of adult wild-type mice, but not of mice lacking IFN-I receptor on their microglia, induces an ageing-like transcriptional microglial signature, and impairs cognitive performance. Furthermore, we demonstrate that age-related IFN-I milieu downregulates microglial myocyte-specific enhancer factor 2C (Mef2C). Immune challenge in mice lacking Mef2C in microglia results in an exaggerated microglial response and has an adverse effect on mice behaviour. Overall, our data indicate that the chronic presence of IFN-I in the brain microenvironment, which negatively affects cognitive function, is mediated via modulation of microglial activity. These findings may shed new light on other neurological conditions characterized by elevated IFN-I signalling in the brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.