In this paper, we present an ontology-based information extraction and retrieval system and its application to soccer domain. In general, we deal with three issues in semantic search, namely, usability, scalability and retrieval performance. We propose a keyword-based semantic retrieval approach. The performance of the system is improved considerably using domain-specific information extraction, inference and rules. Scalability is achieved by adapting a semantic indexing approach. We implement the system using the state-of-the-art technologies in Semantic Web and evaluate the performance against traditional systems. Further detailed evaluation is provided to observe the performance gain due to domain-specific information extraction and inference.
We introduce theasprilo1framework to facilitate experimental studies of approaches addressing complex dynamic applications. For this purpose, we have chosen the domain of robotic intra-logistics. This domain is not only highly relevant in the context of today's fourth industrial revolution but it moreover combines a multitude of challenging issues within a single uniform framework. This includes multi-agent planning, reasoning about action, change, resources, strategies, etc. In return,aspriloallows users to study alternative solutions as regards effectiveness and scalability. Althoughasprilorelies on Answer Set Programming and Python, it is readily usable by any system complying with its fact-oriented interface format. This makes it attractive for benchmarking and teaching well beyond logic programming. More precisely,aspriloconsists of a versatile benchmark generator, solution checker and visualizer as well as a bunch of reference encodings featuring various ASP techniques. Importantly, the visualizer's animation capabilities are indispensable for complex scenarios like intra-logistics in order to inspect valid as well as invalid solution candidates. Also, it allows for graphically editing benchmark layouts that can be used as a basis for generating benchmark suites.
No abstract
We address the problem of Finite Model Computation (FMC) of firstorder theories and show that FMC can efficiently and transparently be solved by taking advantage of a recent extension of Answer Set Programming (ASP), called incremental Answer Set Programming (iASP). The idea is to use the incremental parameter in iASP programs to account for the domain size of a model. The FMC problem is then successively addressed for increasing domain sizes until an answer set, representing a finite model of the original first-order theory, is found. We implemented a system based on the iASP solver iClingo and demonstrate its competitiveness by showing that it slightly outperforms the winner of the FNT division of CADE's Automated Theorem Proving (ATP) competition.
Goal Recognition Design involves identifying the best ways to modify an underlying environment that agents operate in, typically by making asubset of feasible actions infeasible, so that agents are forced to reveal their goals as early as possible. Thus far, existing work has focused exclusively on imperative classical planning. In this paper, we address the same problem with a different paradigm, namely, declarative approaches based on Answer Set Programming (ASP). Our experimental results show that one of our ASP encodings is more scalable and is significantly faster by up to three orders of magnitude than thecurrent state of the art.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.