The effect of yttria concentration (0-33.4 mol%), extraction rates (0.17, 0.33, 0.50, and 0.67 mm s-1), and the number of layers (up to four) on the phase content, surface defects, thickness, hardness, adhesion strength, and wear rate of yttria-stabilized zirconia coatings produced by sol-gel/dip-coating were studied for its use on thermolabile substrates. At 700°C, a metastable tetragonal phase (
t
″
) was obtained even with 33.4 mol% yttria when heat treated for 24 hours; however, a fully cubic structure was attained by extending the heat treatment up to 48 hours as confirmed by Raman spectroscopy. Furthermore, it was necessary to use withdrawal speeds of at least 0.67 mm s-1 to produce defect-free coatings. Although the coatings were produced at low temperature, they showed 41% lower wear rate than steel and an adhesion strength of 30 MPa. Our work stresses the importance of the heat treatment history on the stabilization of the cubic phase in sol-gel YSZ coatings.
In this work, we present the results of two synthesis approaches for mesoporous magnesium carbonates, that result in mineralization of carbon dioxide, producing carbonate materials without the use of cosolvents, which makes them more environmentally friendly. In one of our synthesis methods, we found that we could obtain nonequilibrium crystal structures, with acicular crystals branching bidirectionally from a denser core. Both Raman spectroscopy and X-ray diffraction showed these crystals to be a mixture of sulfate and hydrated carbonates. We attribute the nonequilibrium morphology to coprecipitation of two salts and short synthesis time (25 min). Other aqueous synthesis conditions produced mixtures of carbonates with different morphologies, which changed depending on drying temperature (40 or 100 °C). In addition to aqueous solution, we used supercritical carbon dioxide for synthesis, producing a hydrated magnesium carbonate, with a nesquehonite structure, according to X-ray diffraction. This second material has smaller pores (1.01 nm) and high surface area. Due to their high surface area, these materials could be used for adsorbents and capillary transport, in addition to their potential use for carbon capture and sequestration.
The study of capillary rise of different fluids in a capillary tube is analyzed using different experimental and mathematical methods and simulation with Computational Fluids Dynamics (CFD). Experimental tests are carried out, which in turn are compared with simplified mathematical models and CFD simulations trying to predict the same behavior of the experiments, discussing the similarities or differences found. Capillary forces or linear forces are assumed to have a significant impact on the process by neglecting gravitational forces. We find that for certain cases (depending on the time scale) the behavior can be favorable. Just as the properties of viscosity, interfacial tension and contact angle predominate in the behavior of fluids in the simulations, even the type of tube material also influences the behavior. Since if the material is hydrophilic or hydrophobic it drastically changes the conduction of the fluid, allowing you to be able to predict properties on site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.