Following the report of a non-travel-associated cluster of monkeypox cases by the United Kingdom in May 2022, 41 countries across the WHO European Region have reported 21,098 cases and two deaths by 23 August 2022. Nowcasting suggests a plateauing in case notifications. Most cases (97%) are MSM, with atypical rash-illness presentation. Spread is mainly through close contact during sexual activities. Few cases are reported among women and children. Targeted interventions of at-risk groups are needed to stop further transmission.
The Ebola virus epidemic burst in West Africa in late 2013, started in Guinea, reached in a few months an alarming diffusion, actually involving several countries (Liberia, Sierra Leone, Nigeria, Senegal, and Mali). Guinea and Liberia, the first nations affected by the outbreak, have put in place measures to contain the spread, supported by international organizations; then they were followed by the other nations affected. In the present EVD outbreak, the geographical spread of the virus has followed a new route: the achievement of large urban areas at an early stage of the epidemic has led to an unprecedented diffusion, featuring the largest outbreak of EVD of all time. This has caused significant concerns all over the world: the potential reaching of far countries from endemic areas, mainly through fast transports, induced several countries to issue information documents and health supervision for individuals going to or coming from the areas at risk. In this paper the geographical spread of the epidemic was analyzed, assessing the sequential appearance of cases by geographic area, considering the increase in cases and mortality according to affected nations. The measures implemented by each government and international organizations to contain the outbreak, and their effectiveness, were also evaluated.
The emergence of drug-resistant influenza A virus (IAV) strains represents a serious threat to global human health and underscores the need for novel approaches to anti-influenza chemotherapy. Combination therapy with drugs affecting different IAV targets represents an attractive option for influenza treatment. We have previously shown that the thiazolide anti-infective nitazoxanide (NTZ) inhibits H1N1 IAV replication by selectively blocking viral hemagglutinin maturation. Herein we investigate the anti-influenza activity of NTZ against a wide range of human and avian IAVs (H1N1, H3N2, H5N9, H7N1), including amantadine-resistant and oseltamivir-resistant strains, in vitro. We also investigate whether therapy with NTZ in combination with the neuraminidase inhibitors oseltamivir and zanamivir exerts synergistic, additive, or antagonistic antiviral effects against influenza viruses. NTZ was effective against all IAVs tested, with 50% inhibitory concentrations (IC 50 s) ranging from 0.9 to 3.2 M, and selectivity indexes (SIs) ranging from >50 to >160, depending on the strain and the multiplicity of infection (MOI). Combination therapy studies were performed in cell culture-based assays using
Neuron development and function are exquisitely sensitive to the mechanical properties of their surroundings. Three-dimensional (3D) cultures are therefore being explored as they better mimic the features of the native extracellular matrix. Limitations of existing 3D culture models include poorly defined composition, rapid degradation, and suboptimal biocompatibility. Here we show that ionically cross-linked ultrasoft hydrogels made from unmodified alginate can potently promote neuritogenesis. Alginate hydrogels were characterized mechanically and a remarkable range of stiffness (10-4000 Pa) could be produced by varying the macromer content (0.1-0.4% w/v) and CaCl2 concentration. Dissociated rat embryonic cortical neurons encapsulated within the softest of the hydrogels (0.1% w/v, 10 mM CaCl2) showed excellent viability, extensive formation of axons and dendrites, and long-term activity as determined by calcium imaging. In conclusion, alginate is an off-the-shelf, easy to handle, and inexpensive material, which can be used to make ultrasoft hydrogels for the formation of stable and functional 3D neuronal networks. This 3D culture system could have important applications in neuropharmacology, toxicology, and regenerative medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.