In NF1, Lnfs are common, mainly in larger tumors and women. All cutaneous NF1-neurofibromas express leptin. It is unknown if the expression of leptin accounts for the lipomatous variant, but it may have a role in the pathogenesis of cutaneous neurofibroma.
OBJECTIVE:The aim of this study was to evaluate the effect of oral tamoxifen treatment on the number of myofibroblasts present during the healing process after experimental bile duct injury.METHODS:The sample consisted of 16 pigs that were divided into two groups (the control and study groups). Incisions and suturing of the bile ducts were performed in the two groups. Tamoxifen (20 mg/day) was administered only to the study group. The animals were sacrificed after 30 days. Quantification of myofibroblasts in the biliary ducts was made through immunohistochemistry analysis using anti-alpha smooth muscle actin of the smooth muscle antibody. Immunohistochemical quantification was performed using a digital image system.RESULTS:In the animals treated with tamoxifen (20 mg/day), there was a significant reduction in immunostaining for alpha smooth muscle actin compared with the control group (0.1155 vs. 0.2021, p = 0.046).CONCLUSION:Tamoxifen reduced the expression of alpha smooth muscle actin in the healing tissue after bile duct injury, suggesting a decrease in myofibroblasts in the scarred area of the pig biliary tract. These data suggest that tamoxifen could be used in the prevention of biliary tract stenosis after bile duct surgeries.
BackgroundMultiple cutaneous neurofibromas are a hallmark of neurofibromatosis 1 (NF1). They begin to appear during puberty and increase in number and volume during pregnancy, suggesting a hormonal influence. Ghrelin is a hormone that acts via growth hormone secretagogue receptor (GHS-R), which is overexpressed in many neoplasms and is involved in tumorigenesis. We aimed to investigate GHS-R expression in NF1 cutaneous neurofibromas and its relationship with tumors volume, and patient’s age and gender.ResultsSample comprised 108 cutaneous neurofibromas (55 large and 53 small tumors) from 55 NF1 individuals. GHS-R expression was investigated by immunohistochemistry in tissue micro and macroarrays and quantified using a digital computer-assisted method. All neurofibromas expressed GHS-R, with a percentage of positive cells ranging from 4.9% to 76.1%. Large neurofibromas expressed more GHS-R than the small ones. The percentage of GHS-R-positive cells and intensity of GHS-R expression were positively correlated with neurofibromas volume. GHS-R expression was more common in female gender.ConclusionsGHS-R is expressed in cutaneous neurofibromas. Larger neurofibromas have a higher percentage of positive cells and higher GHS-R intensity. Based on our results we speculate that ghrelin may have an action on the tumorigenesis of cutaneous neurofibromas. Future studies are required to understand the role of ghrelin in the pathogenesis of NF1-associated cutaneous neurofibroma.Electronic supplementary materialThe online version of this article (10.1186/s13023-017-0734-x) contains supplementary material, which is available to authorized users.
End-to-end anastomosis in the treatment for bile duct injury during laparoscopic cholecystectomy has been associated with stricture formation. The aim of this study was to experimentally investigate the effect of oral tamoxifen (tmx) treatment on fibrosis, collagen content and transforming growth factor-β1, -β2 and -β3 expression in common bile duct anastomosis of pigs. Twenty-six pigs were divided into three groups [sham (n = 8), control (n = 9) and tmx (n = 9)]. The common bile ducts were transected and anastomosed in the control and tmx groups. Tmx (40 mg/day) was administered orally to the tmx group, and the animals were euthanized after 60 days. Fibrosis was analysed by Masson's trichrome staining. Picrosirius red was used to quantify the total collagen content and collagen type I/III ratio. mRNA expression of transforming growth factor (TGF)-β1, -β2 and -β3 was quantified using real-time polymerase chain reaction (qRT-PCR). The control and study groups exhibited higher fibrosis than the sham group, and the study group showed lower fibrosis than the control group (P = 0.011). The control and tmx groups had higher total collagen content than the sham group (P = 0.003). The collagen type I/III ratio was higher in the control group than in the sham and tmx groups (P = 0.015). There were no significant differences in the mRNA expression of TGF-β1, -β2 and -β3 among the groups (P > 0.05). Tmx decreased fibrosis and prevented the change in collagen type I/III ratio caused by the procedure.
Objectives To evaluate the expression of progesterone receptor (PR), estrogen receptor (ER), and G protein–coupled estrogen receptor 1 (GPER-1) in cutaneous neurofibromas (cNFs) and their correlation with demographic, clinical, and laboratory data of individuals with neurofibromatosis 1 (NF1). The association of PROGINS polymorphism and PR expression in cNFs, as well as the serum steroidal hormones and the number of cNFs, was investigated. Methods The sample comprised 80 large and 80 small cNFs from 80 individuals with NF1. PR, ER, GPER-1, and Ki-67 expression were investigated by immunohistochemistry in tissue micro- and macroarrays and quantified using a digital computer-assisted method. The number of cNFs, the levels of serum 17β estradiol and progesterone, and the PROGINS polymorphism were identified. Results Twelve (8.5%) small cNFs were weakly positive for ER, 131 (92.3%) cNFs expressed PR, and all (100%) cNFs expressed GPER-1. Large cNFs showed a higher expression of PR (P < .0001) and GPER-1 (P = .019) and had a higher intensity of staining for these receptors (P < .0001). The cell proliferation index was positively correlated with PR (P = .001). Persons with more cNFs had higher serum levels of progesterone (P = .001). Conclusions These findings emphasize the role of estrogen and progesterone in cNF development and suggest that these hormones may act on cNF cells via a noncanonical pathway through GPER-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.