Massive testing to detect SARS-CoV-2 is an imperious need in times of epidemic but also presents challenges in terms of its concretization. The use of saliva as an alternative to nasopharyngeal swabs (NPS) has advantages, being more friendly to the patient and not requiring trained health workers, so much needed in other functions. This study used a total of 452 dual samples (saliva and NPS) of patients suspected of having COVID-19 to compare results obtained for the different specimens when using RT-PCR of RNA extracted from NPS and saliva, as well as saliva directly without RNA extraction. SARS-CoV-2 was not detected in 13 saliva (direct) of the 80 positive NPS samples and in 16 saliva (RNA) of a total of 76 NPS positive samples. Sensitivity of detection of viral genes ORF1ab, E and N in saliva is affected differently and detection of these genes in saliva samples presents great variability when NPS samples present Ct-values above approximately 20, with sensitivities ranging from 76.3% to 86.3%. On average an increase in 7.3 Ct-values (average standard deviation of 4.78) is observed in saliva samples when compared to NPS. The use of this specimen should be carefully considered due to the false negative rate and the system used for detection may be also very relevant since the different viral genes are affected differently in terms of detection sensitivity using saliva.
The present work focuses on the detection of SARS-CoV-2 in saliva, contributing to understanding the inhibition effect of the matrix and its influence on the results. Detection of viral genes ORF1ab, N, and E was performed by RT-PCR using saliva directly in the reaction without RNA extraction. Different amounts of saliva were spiked with increasing amounts of viral RNA from COVID-19 patients and subjected to RT-PCR detection. In parallel, 64 saliva samples from confirmed COVID-19 patients were used in two different amounts directly in the RT-PCR reaction and their results compared. The presence of saliva in the RT-PCR always causes a positive shift of the Ct values, but a very high between-person variability of its magnitude was obtained, with increases ranging from 0.93 to 11.36. Viral targets are also affected differently depending on the initial number of viral particles. Due to inhibitors present in saliva, the duplication of sample volume causes only 48 to 61% of the expected Ct value decrease depending on the viral target gene. The use of saliva has advantages, but also limitations, due to potential inhibitors present in the matrix. However, the choice of the target and the right amount of sample may significantly influence the results.
The use of saliva directly as a specimen to detect viral RNA by RT-PCR has been tested for a long time as its advantages are relevant in terms of convenience and costs. However, as other body fluids, its proven inhibition effect on the amplification reaction can be troublesome and compromise its use in the detection of viral particles. The aim of the present work is to demonstrate that saliva pretreatment may influence the RT-PCR amplification of three gene targets of SARS-CoV-2 significantly. A pool of RNA from confirmed COVID-19 patients was used to test the influence of heat pretreatment of saliva samples at 95°C for 5, 10, 15 and 20 min on the amplification performance of ORF1ab, E, and N SARS-CoV-2 genes. Prolonged heating at 95°C significantly improves the Ct value shift, usually observed in the presence of saliva, increasing the limit of detection of viral genes ORF1ab, E, and N. When tested using a cohort of COVID-19 patients’ saliva, the increased time of heat pretreatment resulted in a significant increase in the detection sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.