One promising pathway for carbon capture and utilization is represented by the coupling of chemical looping cycles with liquid fuel synthesis processes. Methanol is an interesting fuel for gas turbines, due to its potential reduction of NOX and particulate emissions along with the absence of SO2 emissions. In this work, methanol production from the syngas generated by a three-reactors chemical looping process is investigated by mass and energy balances. The cycle is composed by a reducer reactor, where Fe2O3 is reduced to FeO by a reducing agent; an oxidizer reactor, where FeO reacts with CO2 and H2O to produce a syngas; an air reactor, where Fe3O4 is regenerated to Fe2O3 by air. The produced syngas is then sent to a methanol synthesis plant. Several syngas compositions from different CO2/H2O molar fractions (1-3) at the oxidizer inlet are taken into account. The resulting methanol flow rates are almost equal in all investigated configurations (about 0.35 t/h). From an energy standpoint, the required electric power is greater for higher hydrogen mole fractions in the syngas. However, the case with 75% H2 content is characterized by the greatest methanol yield (12.6%), carbon efficiency (23%) and the lowest feed/recirculation ratio, thus representing the most indicated configuration among the investigated ones. Finally, by burning methanol in a gas turbine, the total CO2 emissions are halved with respect to the case without the system (if the CO2 associated with biogenic carbon in the reducer is considered as net-zero).
The relevance of selecting an appropriate bed material in fluidized bed gasification is a crucial aspect that is often underestimated. The ideal material should be economical, resistant to high temperatures and have small chemical interaction with biomass. However, often only the first of such three aspects is considered, neglecting the biomass–bed interaction effects that develop at high temperatures. In this work, olivine and K-feldspar were upscale-tested in a prototype fluidized bed gasifier (FBG) using arboreal biomass (almond shells). The produced syngas in the two different tests was characterized and compared in terms of composition (H2, CH4, CO, CO2, O2) and fate of contaminants such as volatile organic compounds (VOCs), tar and metals.. Moreover, the composition of olivine and K-feldspar before and after the biomass gasification process has been characterized. The aim of this work is to show which advantages and disadvantages there are in choosing the most suitable material and to optimize the biomass gasification process by reducing the undesirable effects, such as heavy metal production, bed agglomeration and tar production, which are harmful when syngas is used in internal combustion engines (ICE). It has been observed that metals, such as Ni, Cu, Zn, Cd, Sn, Ba and Pb, have higher concentrations in the syngas produced by using olivine as bed material rather than K-feldspar. In particular, heavy metals, such as Pb, Cu, Cd, Ni and Zn, show concentrations of 61.06 mg/Nm3, 15.29 mg/Nm3, 17.97 mg/Nm3, 37.29 mg/Nm3 and 116.39 mg/Nm3, respectively, compared to 23.26 mg/Nm3, 11.82 mg/Nm3, 2.76 mg/Nm3, 24.46 mg/Nm3 and 53.07 mg/Nm3 detected with K-feldspar. Moreover, a more hydrogen-rich syngas when using K-feldspar was produced (46% compared to 39% with olivine).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.