Phase decomposition was studied during aging of an Fe-32 at%Cr alloy by means of TEM, hardness and the numerical solution of the linear Cahn-Hilliard differential partial equation using the explicit finite difference method. Results of the numerical simulation permitted to describe appropriately the mechanism, morphology and kinetics of phase decomposition during the isothermal aging of this alloy. The growth kinetics of phase decomposition was observed to be very slow during the early stages of aging and it increased considerably as the aging progressed. The morphology of decomposed phases consisted of an interconnected irregular shape with no preferential alignment for short aging times and a further aging caused the change to a plate shape of the decomposed Cr-rich phase aligned in the h110i directions of the Fe-rich matrix. The increase in hardness seems to be associated with the coherency and nanometer size of the spinodally-decomposed phases in the aged alloy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.