Transcranial magnetic stimulation (TMS) was initially used to evaluate the integrity of the corticospinal tract in humans non-invasively. Since these early studies, the development of paired-pulse and repetitive TMS protocols allowed investigators to explore inhibitory and excitatory interactions of various motor and non-motor cortical regions within and across cerebral hemispheres. These applications have provided insight into the intracortical physiological processes underlying the functional role of different brain regions in various cognitive processes, motor control in health and disease and neuroplastic changes during recovery of function after brain lesions. Used in combination with neuroimaging tools, TMS provides valuable information on functional connectivity between different brain regions, and on the relationship between physiological processes and the anatomical configuration of specific brain areas and connected pathways. More recently, there has been increasing interest in the extent to which these physiological processes are modulated depending on the behavioural setting. The purpose of this paper is (a) to present an up-to-date review of the available electrophysiological data and the impact on our understanding of human motor behaviour and (b) to discuss some of the gaps in our present knowledge as well as future directions of research in a format accessible to new students and/or investigators. Finally, areas of uncertainty and limitations in the interpretation of TMS studies are discussed in some detail.
Movement-related brain activation patterns after subcortical stroke are characterized by relative overactivations in cortical motor areas compared with controls. In patients able to perform a motor task, overactivations are greater in those with more motor impairment. We hypothesized that recruitment of motor regions would shift from primary to secondary motor networks in response to impaired functional integrity of the corticospinal system (CSS). We measured the magnitude of brain activation using functional MRI during a motor task in eight chronic subcortical stroke patients. CSS functional integrity was assessed using transcranial magnetic stimulation to obtain stimulus/response curves for the affected first dorsal interosseus muscle, with a shallower gradient representing increasing disruption of CSS functional integrity. A negative correlation between the gradient of stimulus/response curve and magnitude of task-related brain activation was found in several motor-related regions, including ipsilesional posterior primary motor cortex [Brodmann area (BA) 4p], contralesional anterior primary motor cortex (BA 4a), bilateral premotor cortex, supplementary motor area, intraparietal sulcus, dorsolateral prefrontal cortex and contralesional superior cingulate sulcus. There were no significant positive correlations in any brain region. These results suggest that impaired functional integrity of the CSS is associated with recruitment of secondary motor networks in both hemispheres in an attempt to generate motor output to spinal cord motoneurons. Secondary motor regions are less efficient at generating motor output so this reorganization can only be considered partially successful in reducing motor impairment after stroke.
Reorganization of motor circuits in the cerebral cortex is thought to contribute to recovery following stroke. These can be examined with transcranial magnetic stimulation (TMS) using measures of corticospinal tract integrity and intracortical excitability. However, little is known about how these changes develop during the important early period post-stroke and their influence on recovery. We used TMS to obtain multiple measures bilaterally in a group of 10 patients during the early days and weeks and up to 6 months post-stroke, in order to examine correlations with tests of hand function. Ten age-matched healthy subjects were also studied. After stroke, day-to-day variation in performance was unrelated to physiological measures in the first 3 weeks. Measures of corticospinal integrity averaged over the same period correlated well with hand function, but this relationship became weaker at 3 months. In contrast, most intracortical excitability measures did not correlate acutely but did so strongly at 3 months. Thus in the acute stage, patients’ performance is limited by damage to corticospinal output. Improved performance at 3 months may depend on reorganization in alternative cortical networks to maximize the efficiency of remaining corticospinal pathways—intracortical disinhibition may aid recovery by promoting access to these networks.
During voluntary action, dorsal premotor cortex (PMd) may exert influences on motor regions in both hemispheres, but such interregional interactions are not well understood. We used transcranial magnetic stimulation (TMS) concurrently with event-related functional magnetic resonance imaging to study such interactions directly. We tested whether causal influences from left PMd upon contralateral (right) motor areas depend on the current state of the motor system, involving regions engaged in a current task. We applied short bursts (360 ms) of high- or low-intensity TMS to left PMd during single isometric left-hand grips or during rest. TMS to left PMd affected activity in contralateral right PMd and primary motor cortex (M1) in a state-dependent manner. During active left-hand grip, high (vs. low)-intensity TMS led to activity increases in contralateral right PMd and M1, whereas activity decreases there due to TMS were observed during no-grip rest. Analyses of condition-dependent functional coupling confirmed topographically specific stronger coupling between left PMd and right PMd (and right M1), when high-intensity TMS was applied to left PMd during left-hand grip. We conclude that left PMd can exert state-dependent interhemispheric influences on contralateral cortical motor areas relevant for a current motor task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.