Macrophages are capable of destroying T cells with which they form cellular conjugates. The deletion can be prevented by the simultaneous transmission of costimulatory signals. We show here that T cells with elevated major histocompatibility complex (MHC) class I expression are resistant against macrophage-mediated cytotoxicity. T cells that express the CD45RO isotype, considered memory T cells, exhibit MHC class I antigen at higher density than naive CD45RA T cells and upregulate MHC class I expression promptly when they form cellular conjugates with macrophages. We confirm previous observations that CD45RA T cells are more susceptible to antibody- and macrophage-mediated deletion than memory CD45RO T cells. When MHC class I molecules are masked by specific monoclonal antibody or antibody Fab fragments, CD45RA T cells and CD45RO T cells exhibit equal susceptibility to macrophage cytotoxicity, demonstrating that the difference between CD45RA and CD45RO T cells in their sensitivity to macrophage cytotoxicity is determined by their MHC I expression. Separation of CD4 T cells from CD8 T cells deprives memory CD4 T cells of their resistance against macrophage cytotoxicity, suggesting that memory T cells' resistance against destruction by macrophages is controlled by regulatory T cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.