Processing organic waste using black soldier fly (BSF)-based technology offers a promising alternative for sustainable organic waste management and urban sanitation. This study was conducted to assess the influence of feeding strategies on the efficacy of BSF larvae to recycle organic wastes into value products. Fruit waste and chicken manure were used as organic waste samples while commercial chicken feed was used as a control, and were processed for 15 days in circular plastic containers (Ø 30 × 12 cm) with 50; 100; 150; and 200 mg/larva/day continuous and batch feeding diets, using 500 four-day-old larvae per diet, repeated four times. Larval survival rates were not significantly affected by the feeding strategies. However, average larval biomass of 83.69 ± 13.04 g and 82.46 ± 08.52 g was achieved for the continuous and batch feeding strategies, respectively, under favorable conditions. Larval feed reduction rates ranged from 24.65 ± 03.48% to 72.78 ± 01.48% and 24.52 ± 0.27% to 72.25 ± 12.13% with continuous and batch feeding strategies, respectively, and were significantly affected by the different daily diets. On the other hand, the bioconversion rates ranged from 13.34 ± 0.26% to 50.82 ± 02.27%, and the highest values were observed with the continuous feeding diets. This study confirms the efficacy of BSF larvae to thrive in different organic substrates and shows that the continuous feeding strategy can be better and enhance a sustainable small-scale organic waste management.
Background This study investigates the potential of black soldier fly (BSF) larvae to recycle agricultural waste into larval biomass for chicken feed, and was carried out at the University of Dschang, Cameroon in 2020. Fruit waste consisting of papaya, pineapple and orange peels, and cocoa pods from local sources were used for this study. They were first grinded, and the fruit waste was subjected directly to the larvae from a pre-established BSF colony. Cocoa pods on the other hand were mixed with Tithonia leaves at 0% (C100:T0), 5% (C95:T5), 10% (C90:T10), 15% (C85:T15) and 20% (C80:T20), and larval recycling efficiency was assessed using bioconversion parameters. At the end of the process, the BSF larvae from the fruit waste were harvested, dried, grinded, and used in chicken diet as a source of dietary protein. Their nutritional effect was assessed using chicken growth parameters. Results Within 15 days, BSF larvae were able to reduce fruit waste by 96.05% and generated 125.33 g of fresh larvae, with an average bioconversion rate of 08.35%. The recycling efficiency of cocoa pods has been greatly improved with the incorporation of Tithonia leaves. The highest bioconversion rate was recorded with the C80:T20 treatment (17.2%). The larvae produced were concentrated in proteins, lipids, and minerals. Those harvested from recycling fruit waste consisted of 39.50% protein, 19.84% lipid and 10.37% ash. Their incorporation in chicken diet as a source of animal protein did not reveal any negative effects on the growth parameters. The growth performances recorded were comparable to that of commonly used fishmeal. Conclusions BSF larvae can easily be reared on agricultural waste to replace or supplement fishmeal in chicken diet. Adoption of this technology could help mitigate the adverse effects of poor agricultural waste management on the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.