Objective To formulate consensus treatment plans (CTPs) for induction therapy of newly-diagnosed proliferative lupus nephritis (LN) in juvenile systemic lupus erythematosus (jSLE). Methods A structured consensus formation process was employed by the members of the Childhood Arthritis and Rheumatology Research Alliance (CARRA) after considering the existing medical evidence and current treatment approaches. Results After an initial Delphi survey (response rate 70%), a 2-day consensus conference, and two follow-up Delphi surveys (response rates 63–79%), consensus was achieved for a limited set of CTPs addressing the induction therapy of proliferative LN. These CTPs were developed for prototypic patients defined by eligibility characteristics, and included immunosuppressive therapy with either mycophenolic acid orally twice per day, or intravenous cyclophosphamide once per month at standardized doses for six months. Additionally, the CTPs describe three options for standardized use of glucocorticoids; including a primarily oral, a mixed oral/intravenous, and a primarily intravenous regimen. There was consensus on measures of effectiveness and safety of the CTPs. The CTPs were well accepted by the pediatric rheumatology providers treating children with LN, and up to 300 children per year in North America are expected to be candidates for the treatment with the CTPs. Conclusion CTPs for induction therapy of proliferative LN in jSLE based on the available scientific evidence and pediatric rheumatology group experience have been developed. Consistent use of the CTPs may improve the prognosis of proliferative LN, and support the conduct of comparative effectiveness studies aimed at optimizing therapeutic strategies for proliferative LN in jSLE.
Many identified genetic risk factors for SLE contribute to the function of the immune system, which has expanded our understanding of disease pathogenesis. We outline the genetic variants in the recently identified SLE-associated loci, the immunologic pathways affected by these gene products, and the disease manifestations linked to these loci. Pathways potentially influenced by SLE risk variants include: apoptosis, DNA degradation and clearance of cellular debris; antigen-presentation; type I interferon, Toll-like receptor and NFκB activation; defective clearance of immune complexes containing nuclear antigens; B- and T-cell function and signaling; and monocyte and neutrophil function and signaling. These identified SLE susceptibility loci are predominantly common variants that have been confirmed among multiple ancestries, suggesting shared mechanisms in disease etiology. Ongoing genetic studies continue the investigation of specific functional variants, and their potential consequences upon immune dysregulation, enhancing our understanding of links between genotypes and specific disease manifestations. The next generation sequencing explores the identification of causal rare variants that may contribute robust genetic effects to developing SLE. Novel insights coming from genetic studies of SLE provide the opportunity to elucidate pathogenic mechanisms as well as contribute to the development of innovative therapeutic targets for this complex disease.
IntroductionOsteopontin (OPN) has been implicated as a mediator of Th17 regulation via type I interferon (IFN) receptor signaling and in macrophage activity at sites of tissue repair. This study assessed whether increased circulating plasma OPN (cOPN) precedes development of organ damage in pediatric systemic lupus erythematosus (pSLE) and compared it to circulating plasma neutrophil gelatinase-associated lipocalin (cNGAL), a predictor of increased SLE disease activity.MethodscOPN and cNGAL were measured in prospectively followed pSLE (n = 42) and adult SLE (aSLE; n = 23) patients and age-matched controls. Time-adjusted cumulative disease activity and disease damage were respectively assessed using adjusted-mean SLE disease activity index (SLEDAI) (AMS) and SLICC/ACR damage index (SDI).ResultsCompared to controls, elevated cOPN and cNGAL were observed in pSLE and aSLE. cNGAL preceded worsening SLEDAI by 3-6 months (P = 0.04), but was not associated with increased 6-month AMS. High baseline cOPN, which was associated with high IFNalpha activity and expression of autoantibodies to nucleic acids, positively correlated with 6-month AMS (r = 0.51 and 0.52, P = 0.001 and 0.01 in pSLE and aSLE, respectively) and was associated with SDI increase at 12 months in pSLE (P = 0.001). Risk factors for change in SDI in pSLE were cOPN (OR 7.5, 95% CI [2.9-20], P = 0.03), but not cNGAL, cumulative prednisone, disease duration, immunosuppression use, gender or ancestry using univariate and multivariate logistic regression. The area under the curve (AUC) when generating the receiver-operating characteristic (ROC) of baseline cOPN sensitivity and specificity for the indication of SLE patients with an increase of SDI over a 12 month period is 0.543 (95% CI 0.347-0.738; positive predictive value 95% and negative predictive value 38%).ConclusionHigh circulating OPN levels preceded increased cumulative disease activity and organ damage in SLE patients, especially in pSLE, and its value as a predictor of poor outcome should be further validated in large longitudinal cohorts.
IntroductionThe purpose of this study was to evaluate the effects of L-4F, an apolipoprotein A-1 mimetic peptide, alone or with pravastatin, in apoE-/-Fas-/-C57BL/6 mice that spontaneously develop immunoglobulin G (IgG) autoantibodies, glomerulonephritis, osteopenia, and atherosclerotic lesions on a normal chow diet.MethodsFemale mice, starting at eight to nine weeks of age, were treated for 27 weeks with 1) pravastatin, 2) L-4F, 3) L-4F plus pravastatin, or 4) vehicle control, followed by disease phenotype assessment.ResultsIn preliminary studies, dysfunctional, proinflammatory high-density lipoproteins (piHDL) were decreased six hours after a single L-4F, but not scrambled L-4F, injection in eight- to nine-week old mice. After 35 weeks, L-4F-treated mice, in the absence/presence of pravastatin, had significantly smaller lymph nodes and glomerular tufts (PL, LP < 0.05), lower serum levels of IgG antibodies to double stranded DNA (dsDNA) (PL < 0.05) and oxidized phospholipids (oxPLs) (PL, LP < 0.005), and elevated total and vertebral bone mineral density (PL, LP < 0.01) compared to vehicle controls. Although all treatment groups presented larger aortic root lesions compared to vehicle controls, enlarged atheromas in combination treatment mice had significantly less infiltrated CD68+ macrophages (PLP < 0.01), significantly increased mean α-actin stained area (PLP < 0.05), and significantly lower levels of circulating markers for atherosclerosis progression, CCL19 (PL, LP < 0.0005) and VCAM-1 (PL < 0.0002).ConclusionsL-4F treatment, alone or with pravastatin, significantly reduced IgG anti-dsDNA and IgG anti-oxPLs, proteinuria, glomerulonephritis, and osteopenia in a murine lupus model of accelerated atherosclerosis. Despite enlarged aortic lesions, increased smooth muscle content, decreased macrophage infiltration, and decreased pro-atherogenic chemokines in L-4F plus pravastatin treated mice suggest protective mechanisms not only on lupus-like disease, but also on potential plaque remodeling in a murine model of systemic lupus erythematosus (SLE) and accelerated atherosclerosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.