Bone marrow (BM) multipotent mesenchymal stromal cells (MSCs) present with multipotent differentiation potential and immunomodulatory properties. As an alternative to bone marrow, we have examined fetal membranes, amnion and chorion, of term human placenta as a potential source of multipotent MSCs. Here we show that amnion mesenchymal cells (AMCs) and chorion mesenchymal cells (CMCs), isolated by mechanical separation and subsequent enzymatic digestion, demonstrate plastic adherence and fibroblast-like morphology and are able to form colonies that could be expanded for at least 15 passages. By FACS analysis, AMCs and CMCs were shown to be phenotypically similar to BM-MSCs and, when cultured in differentiation media, they demonstrated high morphogenetic plasticity by differentiating into osteocytes, chondrocytes and adipocytes. In an attempt to isolate cells with MSC characteristics from human fetal membranes, AMCs and CMCs expressing CD271 were enriched by immunomagnetic isolation and were demonstrated to possess higher clonogenic and osteogenic differentiation potential than CD271-depleted fractions. Based on these findings, amnion and chorion can be considered as a novel and convenient source of adult MSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.