Mycotoxin contamination is a global food safety issue leading to major public health concerns. Repeated exposure to multiple mycotoxins not only has repercussions on human health but could theoretically also lead to interactions with other xenobiotic substances—such as drugs—in the body by altering their pharmacokinetics and/or pharmacodynamics. The combined effects of chronic drug use and mycotoxin exposure need to be well understood in order to draw valid conclusions and, in due course, to develop guidelines. The aim of this review is to focus on food contaminants, more precisely on mycotoxins, and drugs. First, a description of relevant mycotoxins and their effects on human health and metabolism is presented. The potential for interactions of mycotoxins with drugs using in vitro and in vivo animal experiments is summarized. Predictive software tools for unraveling mycotoxin–drug interactions are proposed and future perspectives on this emerging topic are highlighted with a view to evaluate associated risks and to focus on precision medicine. In vitro and in vivo animal studies have shown that mycotoxins affect CYP450 enzyme activity. An impact from drugs on mycotoxins mediated via CYP450-enzymes is plausible; however, an impact of mycotoxins on drugs is less likely considering the much smaller dose exposure to mycotoxins. Drugs that are CYP450 perpetrators and/or substrates potentially influence the metabolism of mycotoxins, metabolized via these CYP450 enzymes. To date, very little research has been conducted on this matter. The only statistically sound reports describe mycotoxins as victims and drugs as perpetrators in interactions; however, more analysis on mycotoxin–drug interactions needs to be performed.
Mycotoxins, fungal secondary metabolites, are ubiquitously present in food commodities. Acute exposure to high levels or chronic exposure to low levels has an impact on the human body. The phase I metabolism in the human liver, performed by cytochrome P450 (CYP450) enzymes, is accountable for more than 80% of the overall metabolism of exogenous and endogenous compounds. Mycotoxins are (partially) metabolized by CYP450 enzymes. In this study, in vitro research was performed on CYP450 probes and aflatoxin B1 (AFB1), a carcinogenic mycotoxin, to obtain pharmacokinetic data on AFB1, required for further experimental work. The CYP450 probes of choice were a CYP3A4 substrate, midazolam (MDZ) and a CYP1A2 substrate, phenacetin (PH) since these are the main metabolizing phase I enzymes of AFB1. Linearity experiments were performed on the three substrates indicating that linear conditions were achieved at a microsomal protein concentration and incubation time of 0.25 mg/ml and 5 min, 0.50 mg/ml and 20 min and 0.25 mg/ml and 5 min for MDZ, PH and AFB1, respectively. The Km was determined in human liver microsomes and was estimated at 2.15 μM for MDZ, 40.0 μM for PH and 40.9 μM for AFB1. The associated Vmax values were 956 pmol/(mg.min) (MDZ), 856 pmol/(mg.min) (PH) and 11,536 pmol/(mg.min) (AFB1). Recombinant CYP systems were used to determine CYP450-specific Michaelis–Menten values for AFB1, leading to a CYP3A4 Km of 49.6 μM and an intersystem extrapolation factor (ISEF) corrected Vmax of 43.6 pmol/min/pmol P450 and a CYP1A2 Km of 58.2 μM and an ISEF corrected Vmax of 283 pmol/min/pmol P450. An activity adjustment factor (AAF) was calculated to account for differences between microsome batches and was used as a correction factor in the determination of the human in vivo hepatic clearance for MDZ, PH and AFB1. The hepatic blood clearance corrected for the AAF CLH,B,MDZ,AAF, CLH,B,PH,AAF CLH,B,AFB1,AAF(CYP3A4) and CLH,B,AFB1,AAF(CYP1A2) were determined in HLM at 44.1 L/h, 21.7 L/h, 40.0 L/h and 38.5 L/h. Finally, inhibition assays in HLM showed that 45% of the AFB1 metabolism was performed by CYP3A4/3A5 enzymes and 49% by CYP1A2 enzymes.
Mycotoxins such as aflatoxin B1 (AFB1) are secondary fungal metabolites present in food commodities and part of one’s daily exposure, especially in certain regions, e.g., sub-Saharan Africa. AFB1 is mostly metabolised by cytochrome P450 (CYP) enzymes, namely, CYP1A2 and CYP3A4. As a consequence of chronic exposure, it is interesting to check for interactions with drugs taken concomitantly. A physiologically based pharmacokinetic (PBPK) model was developed based on the literature and in-house-generated in vitro data to characterise the pharmacokinetics (PK) of AFB1. The substrate file was used in different populations (Chinese, North European Caucasian and Black South African), provided by SimCYP® software (v21), to evaluate the impact of populations on AFB1 PK. The model’s performance was verified against published human in vivo PK parameters, with AUC ratios and Cmax ratios being within the 0.5–2.0-fold range. Effects on AFB1 PK were observed with commonly prescribed drugs in South Africa, leading to clearance ratios of 0.54 to 4.13. The simulations revealed that CYP3A4/CYP1A2 inducer/inhibitor drugs might have an impact on AFB1 metabolism, altering exposure to carcinogenic metabolites. AFB1 did not have effects on the PK of drugs at representative exposure concentrations. Therefore, chronic AFB1 exposure is unlikely to impact the PK of drugs taken concomitantly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.