The activity of microbial transglutaminase (MTG) and the corresponding secondary structure, measured by circular dichroism (CD), was analyzed before and after treatment at different temperatures (40 and 80 degrees C) and pressures (0.1, 200, 400, 600 MPa). Irreversible enzyme inactivation was achieved after 2 min at 80 degrees C and 0.1 MPa. Enzyme inactivation at 0.1, 200, 400, and 600 MPa and 40 degrees C followed first-order kinetics. The enzyme showed residual activity of 50% after 12 min at 600 MPa and 40 degrees C. Mobility of aromatic side chains of the enzyme molecule was observed in all temperature- and/or pressure-treated samples; however, high-pressure treatment at 600 MPa induced a loss of tertiary structure and a significant decrease in the alpha-helix content. The relative content of beta-strand substructures was significantly increased after 30 min at 600 MPa and 40 degrees C or 2 min at 0.1 MPa and 80 degrees C. We conclude that the active center of MTG, which is located in an expanded beta-strand domain, is resistant to high hydrostatic pressure and pressure-induced inactivation is caused by destruction of alpha-helix elements with a corresponding influence on the enzyme stability in solution.
Casein solutions (5% w/v) were treated with microbial transglutaminase (MTG) and glucono-delta-lactone (GDL) under varying conditions in order to obtain gels. Storage modulus (G') and gelation time of the gels were measured by oscillation rheometry, while protein cross-linking was determined by gel permeation chromatography. The addition of only GDL to milk resulted in very weak gels, while MTG on its own was not able to create gel networks. Simultaneous action of both ingredients led to gels, the firmness of which was linearly related to the added amount of MTG, but passed through a maximum with rising GDL concentrations. Using chromatographical analysis, increasing G' values were interrelated with the formation of MTG-induced oligomers. The gelation time was directly proportional to the GDL concentration but not influenced by the addition of MTG within the studied range of concentration.
Kinetics for the reaction of microbial transglutaminase (MTG) with individual caseins in a TRIS-acetate buffer at pH 6.0 was evaluated under atmospheric pressure (0.1 MPa) and high pressure (400 MPa) at 40 °C. The reaction was monitored under the following limitations: The kinetics from the initial velocities was obtained from nonprogressive enzymatic reactions assuming that the individual catalytic constants of reactive glutamine residues are represented by the reaction between MTG and casein monomers. Enzyme reaction kinetics carried out at 0.1 MPa at 40 °C showed Henri-Michaelis-Menten behavior with maximal velocities of 2.7 ± 0.02 × 10(-3), 0.8 ± 0.01 × 10(-3), and 1.3 ± 0.30 × 10(-3) mmol/L · min and K(m) values of 59 ± 2 × 10(-3), 64 ± 3 × 10(-3), and 50 ± 2 × 10(-3) mmol/L for β-, α(s1)-, and acid casein, respectively. Enzyme reaction kinetics of β-casein carried out at 400 MPa and 40 °C also showed a Henri-Michaelis-Menten behavior with a similar maximal velocity of 2.5 ± 0.33 × 10(-3) mmol/L · min, but, comparable to a competitive inhibition, the K(m) value increased to 144 ± 34 × 10(-3) mmol/L. The reaction of MTG with α(s1)-casein under high pressure did not fit in to Henri-Michaelis-Menten kinetics, indicating the complex influence of pressure on protein-enzyme interactions.
Enzyme activity and corresponding secondary structure, measured by circular dichroism was analysed before und after treatment of microbial transglutaminase at different temperatures (40, 80°C) and pressures (0.1, 200, 400, 600 MPa). Irreversible enzyme inactivation was achieved at 80°C after 2 minutes at atmospheric pressure. Enzyme inactivation at 0.1, 200, 400, 600 MPa and 40°C followed first order kinetics. Increasing pressure reduced MTG activity, nevertheless the enzyme showed a residual activity of 50% after 12 min at 600 MPa. The analysis of the native enzyme exhibited well-defined proportions between α-helix, β-strand, β-turn and unordered structures. In contrast to heating, high-pressure treatment only at high levels induced significant decrease in the α-helix content, whereas β-strand substructures remained unaltered in both cases. Based on the known crystal structure of MTG it can be concluded that the active centre of the enzyme itself, which is located in an expanded β-strand domain, is relatively stable and pressure-induced inactivation is caused by a degradation of α-helix elements with corresponding influence on the tertiary structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.