IntroductionOsteoarthritis (OA) is a degenerative disease characterized by cartilage breakdown in the synovial joints. The presence of low-grade inflammation in OA joints is receiving increasing attention, with synovitis shown to be present even in the early stages of the disease. How the synovial inflammation arises is unclear, but proteins in the synovial fluid of affected joints could conceivably contribute. We therefore surveyed the proteins present in OA synovial fluid and assessed their immunostimulatory properties.MethodsWe used mass spectrometry to survey the proteins present in the synovial fluid of patients with knee OA. We used a multiplex bead-based immunoassay to measure levels of inflammatory cytokines in serum and synovial fluid from patients with knee OA and from patients with rheumatoid arthritis (RA), as well as in sera from healthy individuals. Significant differences in cytokine levels between groups were determined by significance analysis of microarrays, and relations were determined by unsupervised hierarchic clustering. To assess the immunostimulatory properties of a subset of the identified proteins, we tested the proteins' ability to induce the production of inflammatory cytokines by macrophages. For proteins found to be stimulatory, the macrophage stimulation assays were repeated by using Toll-like receptor 4 (TLR4)-deficient macrophages.ResultsWe identified 108 proteins in OA synovial fluid, including plasma proteins, serine protease inhibitors, proteins indicative of cartilage turnover, and proteins involved in inflammation and immunity. Multiplex cytokine analysis revealed that levels of several inflammatory cytokines were significantly higher in OA sera than in normal sera, and levels of inflammatory cytokines in synovial fluid and serum were, as expected, higher in RA samples than in OA samples. As much as 36% of the proteins identified in OA synovial fluid were plasma proteins. Testing a subset of these plasma proteins in macrophage stimulation assays, we found that Gc-globulin, α1-microglobulin, and α2-macroglobulin can signal via TLR4 to induce macrophage production of inflammatory cytokines implicated in OA.ConclusionsOur findings suggest that plasma proteins present in OA synovial fluid, whether through exudation from plasma or production by synovial tissues, could contribute to low-grade inflammation in OA by functioning as so-called damage-associated molecular patterns in the synovial joint.
IntroductionThere is increasing evidence that autoantibodies and immune complexes (ICs) contribute to synovitis in rheumatoid arthritis (RA), yet the autoantigens incorporated in ICs in RA remain incompletely characterised.MethodsWe used the C1q protein to capture ICs from plasma derived from human RA and control patients. Antibodies specific for immunoglobulin were used to detect ICs, and fibrinogen antibodies were used to detect fibrinogen-containing ICs. RA and control plasma were separated by liquid chromatography, and fractions then characterised by ELISA, immunoblotting and mass spectrometry. Immunohistochemical staining was performed on rheumatoid synovial tissue.ResultsC1q-immunoassays demonstrated increased levels of IgG (p = 0.01) and IgM (p = 0.0002) ICs in plasma derived from RA patients possessing anti-cyclic citrullinated peptide (CCP+) autoantibodies as compared with healthy controls. About one-half of the anti-CCP+ RA possessed circulating ICs containing fibrinogen (p = 0.0004). Fractionation of whole RA plasma revealed citrullinated fibrinogen in the high molecular weight fractions that contained ICs. Positive correlations were observed between fibrinogen-containing ICs and anti-citrullinated fibrinogen autoantibodies, anti-CCP antibody, rheumatoid factor and certain clinical characteristics. Immunohistochemical staining demonstrated co-localisation of fibrinogen, immunoglobulin and complement component C3 in RA pannus tissue. Mass spectrometry analysis of immune complexes immunoprecipitated from RA pannus tissue lysates demonstrated the presence of citrullinated fibrinogen.ConclusionCirculating ICs containing citrullinated fibrinogen are present in one-half of anti-CCP+ RA patients, and these ICs co-localise with C3 in the rheumatoid synovium suggesting that they contribute to synovitis in a subset of RA patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.