We present the results of a single-pointing survey of 207 dense cores embedded in Planck Galactic Cold Clumps distributed in five different environments (λ Orionis, Orion A, B, Galactic plane, and high latitudes) to identify dense cores on the verge of star formation for the study of the initial conditions of star formation. We observed these cores in eight molecular lines at 76-94 GHz using the Nobeyama 45-m telescope. We find that early-type molecules (e.g., CCS) have low detection rates and that late-type molecules (e.g., N 2 H + , cC 3 H 2) and deuterated molecules (e.g., N 2 D + , DNC) have high detection rates, suggesting that most of the cores are chemically evolved. The deuterium fraction (D/H) is found to decrease with increasing distance, indicating that it suffers from differential beam dilution between the D/H pair of lines for distant cores (>1 kpc). For λ Orionis, Orion A, and B located at similar distances, D/H is not significantly different, suggesting that there is no systematic difference in the observed chemical properties among these three regions. We identify at least eight high D/H cores in the Orion region and two at high latitudes, which are most likely to be close to the onset of star formation. There is no clear evidence of the evolutionary change in turbulence during the starless phase, suggesting that the dissipation of turbulence is not a major mechanism for the beginning of star formation as judged from observations with a beam size of 0.04 pc.
The FU Orionis-type objects (FUors) are low-mass pre-main-sequence stars undergoing a temporary but significant increase of mass accretion rate from the circumstellar disk onto the protostar. It is not yet clear what triggers the accretion bursts and whether the disks of FUors are in any way different from the disks of nonbursting young stellar objects. Motivated by this, we conducted a 1.3 mm continuum survey of 10 FUors and FUor-like objects with ALMA, using both the 7 m array and the 12 m array in two different configurations to recover emission at the widest possible range of spatial scales. We detected all targeted sources and several nearby objects as well. To constrain the disk structure, we fit the data with models of increasing complexity from 2D Gaussian to radiative transfer, enabling comparison with other samples modeled in a similar way. The radiative transfer modeling gives disk masses that are significantly larger than what is obtained from the measured millimeter fluxes assuming optically thin emission, suggesting that the FUor disks are optically thick at this wavelength. In comparison with samples of regular class II and class I objects, the disks of FUors are typically a factor of 2.9-4.4 more massive and a factor of 1.5-4.7 smaller in size. A significant fraction of them (65%-70%) may be gravitationally unstable.
Aims. We focus on characterizing the young stellar population in the Rosette complex to improve our understanding of the processes that regulate the star formation in this region. Methods. We propose an original method that relies on the joint analysis of the star color and density in the near-infrared. It leads to mapping the molecular cloud spatial distribution and detecting the embedded clusters with their characterization in terms of member number and age estimation. Results. We have identified 13 clusters, 2 of which are new discoveries, and we estimate that the total number of young stellar objects in the Rosette ranges between 4000 and 8000 members. We find that the age distribution of the young clusters is not consistent with a general triggered scenario for the star formation in this molecular cloud. Conclusions. This study proves that the Rosette complex evolution is not governed by the influence of its OB star population. It suggests that the simple morphological appearance of an active region is not sufficient to conclude much about the triggering role in the star formation process. Our method of constraining the cluster properties using UKIDSS and WISE data has proven efficient, and studies of other regions of the Galactic plane would definitely benefit from this approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.