Women are severely marginalized in software development, especially in open source. In this article we argue that disadvantage is more due to gendered behavior than to categorical discrimination: women are at a disadvantage because of what they do, rather than because of who they are. Using data on entire careers of users from GitHub.com, we develop a measure to capture the gendered pattern of behavior: We use a random forest prediction of being female (as opposed to being male) by behavioral choices in the level of activity, specialization in programming languages, and choice of partners. We test differences in success and survival along both categorical gender and the gendered pattern of behavior. We find that 84.5% of women's disadvantage (compared to men) in success and 34.8% of their disadvantage in survival are due to the female pattern of their behavior. Men are also disadvantaged along their interquartile range of the female pattern of their behavior, and users who don't reveal their gender suffer an even more drastic disadvantage in survival probability. Moreover, we do not see evidence for any reduction of these inequalities in time. Our findings are robust to noise in gender recognition, and to taking into account particular programming languages, or decision tree classes of gendered behavior. Our results suggest that fighting categorical gender discrimination will have a limited impact on gender inequalities in open source software development, and that gender hiding is not a viable strategy for women.
Unbiased science dissemination has the potential to alleviate some of the known gender disparities in academia by exposing female scholars’ work to other scientists and the public. And yet, we lack comprehensive understanding of the relationship between gender and science dissemination online. Our large-scale analyses, encompassing half a million scholars, revealed that female scholars’ work is mentioned less frequently than male scholars’ work in all research areas. When exploring the characteristics associated with online success, we found that the impact of prior work, social capital, and gendered tie formation in coauthorship networks are linked with online success for men, but not for women—even in the areas with the highest female representation. These results suggest that while men’s scientific impact and collaboration networks are associated with higher visibility online, there are no universally identifiable facets associated with success for women. Our comprehensive empirical evidence indicates that the gender gap in online science dissemination is coupled with a lack of understanding the characteristics that are linked with female scholars’ success, which might hinder efforts to close the gender gap in visibility.
The unprecedented behavioural responses of societies have been evidently shaping the COVID-19 pandemic, yet it is a significant challenge to accurately monitor the continuously changing social mixing patterns in real-time. Contact matrices, usually stratified by age, summarise interaction motifs efficiently, but their collection relies on conventional representative survey techniques, which are expensive and slow to obtain. Here we report a data collection effort involving over $$2.3\%$$ 2.3 % of the Hungarian population to simultaneously record contact matrices through a longitudinal online and sequence of representative phone surveys. To correct non-representative biases characterising the online data, by using census data and the representative samples we develop a reconstruction method to provide a scalable, cheap, and flexible way to dynamically obtain closer-to-representative contact matrices. Our results demonstrate that although some conventional socio-demographic characters correlate significantly with the change of contact numbers, the strongest predictors can be collected only via surveys techniques and combined with census data for the best reconstruction performance. We demonstrate the potential of combined online-offline data collections to understand the changing behavioural responses determining the future evolution of the outbreak, and to inform epidemic models with crucial data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.