Fruit defense against pathogens relies on induced and preformed mechanisms. The present contribution evaluated performed resistance of red and green mango fruit against the fungal pathogen Colletotrichum gloeosporioides and identified the main active antifungal components.High-performance liquid chromatography analysis of nonhydrolyzed mango peel extracts identified major anthocyanin peaks of glycosylated cyanidin and methylcyanidin, and flavonol peaks of glycosylated quercetin and kaempferol, which were more abundant on the 'red side' of red mango fruit. Organic extracts of red vs green mango peel were more efficient in inhibiting C. gloeosporioides.Transcriptome analysis of the mango-C. gloeosporioides interaction showed increased expression of glucosidase genes related to both fungal pathogenicity and host defense. Glucosidase treatment of organic peel extract increased its antifungal activity. Additionally, quercetin and cyanidin had significantly higher antifungal activity than their glycosylated derivatives. Peel extract volatiles treated with glucosidase had antifungal activity. GCMS analysis identified 15 volatiles after glucosidase hydrolysis, seven of them present only in red fruit.These results suggest that the fruit obtains a concealed arsenal of glycosylated flavonoids in its peel when they are hydrolyzed by b-glucosidase that is induced in both fungus and host during infection process, become more toxic to the fungal pathogen, inhibiting decay development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.