Background Exercise training (ET) has beneficial effects on multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE). However, the intensity‐dependent effects of ET on the systemic immune system in EAE remain undefined. Objective (1) To compare the systemic immune modulatory effects of moderate versus high‐intensity ET protocols in protecting against development of EAE; (2) To investigate whether ET affects autoimmunity selectively, or causes general immunosuppression. Methods Healthy mice performed moderate or high‐intensity treadmill running programs. Proteolipid protein (PLP)‐induced transfer EAE was utilized to examine ET effects specifically on the systemic immune system. Lymph node (LN)‐T cells from trained versus sedentary donor mice were transferred to naïve recipients and EAE severity was assessed, by clinical assessment and histopathological analysis. LN‐T cells derived from donor trained versus sedentary PLP‐immunized mice were analyzed in vitro for proliferation assays by flow cytometry analysis and cytokine and chemokine receptor gene expression using real‐time PCR. T cell‐dependent immune responses of trained versus sedentary mice to the nonautoantigen ovalbumin and susceptibility to Escherichia coli‐induced acute peritonitis were examined. Results High‐intensity training in healthy donor mice induced significantly greater inhibition than moderate‐intensity training on proliferation and generation of encephalitogenic T cells in response to PLP‐immunization, and on EAE severity upon their transfer into recipient mice. High‐intensity training also inhibited LN‐T cell proliferation in response to ovalbumin immunization. E. coli bacterial counts and dissemination were not affected by training. Interpretation High‐intensity training induces superior effects in preventing autoimmunity in EAE, but does not alter immune responses to E. coli infection.
The link between the gut microbiota and social behavior has been demonstrated, however the translational impact of a certain microbiota composition on stable behavioral patterns is yet to be elucidated. Here we employed an established social behavior mouse model of dominance (Dom) or submissiveness (Sub). A comprehensive 16S rRNA gene sequence analysis of Dom and Sub mice revealed a significantly different gut microbiota composition that clearly distinguishes between the two behavioral modes. Sub mice gut microbiota is significantly less diverse than that of Dom mice, and their taxa composition uniquely comprised the genera Mycoplasma and Anaeroplasma of the Tenericutes phylum, in addition to the Rikenellaceae and Clostridiaceae families. Conversely, the gut microbiota of Dom mice includes the genus Prevotella of the Bacteriodetes phylum, significantly less abundant in Sub mice. In addition, Sub mice show lower body weight from the age of 2 weeks and throughout their life span, accompanied with lower epididymis white adipose tissue (eWAT) mass and smaller adipocytes together with substantially elevated expression of inflammation and metabolic-related eWAT adipokines. Finally, fecal microbiota transplantation into germ-free mice show that Sub-transplanted mice acquired Sub microbiota and adopted their behavioral and physiological features, including depressive-like and anti-social behaviors alongside reduced eWAT mass, smaller adipocytes, and a Sub-like eWAT adipokine profile. Our findings demonstrate the critical role of the gut microbiome in determining dominance vs. submissiveness and suggest an association between gut microbiota, the eWAT metabolic and inflammatory profile, and the social behavior mode.
ALOS4, a unique synthetic cyclic peptide without resemblance to known integrin ligand sequences, was discovered through repeated biopanning with pIII phage expressing a disulfide-constrained nonapeptide library. Binding assays using a FITC-labeled analogue demonstrated selective binding to immobilized αvβ3 and a lack of significant binding to other common proteins, such as bovine serum albumin and collagen. In B16F10 cell cultures, ALOS4 treatment at 72 h inhibited cell migration (30%) and adhesion (up to 67%). Immunofluorescent imaging an ALOS4-FITC analogue with B16F10 cells demonstrated rapid cell surface binding, and uptake and localization in the cytoplasm. Daily injections of ALOS4 (0.1, 0.3 or 0.5 mg/kg i.p.) to mice inoculated with B16F10 mouse melanoma cells in two different cancer models, metastatic and subcutaneous tumor, resulted in reduction of lung tumor count (metastatic) and tumor mass (subcutaneous) and increased survival of animals monitored to 45 and 60 days, respectively. Examination of cellular activity indicated that ALOS4 produces inhibition of cell migration and adhesion in a concentration-dependent manner. Collectively, these results suggest that ALOS4 is a structurally-unique selective αvβ3 integrin ligand with potential anti-metastatic activity.
It is known that stress alters homeostasis and may lead to accelerated aging. However, little is known about the contribution of innate susceptibility to stress to the deterioration of physiological functions, acceleration of aging and developing of age-related diseases. By using socially-submissive stress susceptible (Sub) and socially-dominant stress resilient (Dom) selectively bred mouse model we observed a marked reduction in the lifespan of both male and female Sub mice. We found that innate susceptibility to stress correlates with chronic inflammation, development of splenomegaly and a significant increase in the levels of circulating pro-inflammatory cytokines IL-1β and IL-6. Furthermore, Sub mice showed a marked hypoglycemia, reduction of insulin levels, increase in GSK3 activity and elevation of IGF-1 serum levels, as well as low skin surface temperature and body weight. Interestingly, lifelong exposure of Sub mice to chronic mild stress did not further reduce their lifespan, indicating a high level of intrinsic stress. Taken together, our data reveal that social submissiveness coupled with innate stress sensitivity coincides with inflammation, leading to the deterioration of physiological functions and early aging independent of whether an individual is exposed to stress or not.
We examined the effects of ALOS4, a cyclic peptide discovered previously by phage library selection against integrin αvβ3, on a human melanoma (A375) xenograft model to determine its abilities as a potential anti-cancer agent. We found that ALOS4 promoted healthy weight gain in A375-engrafted nude mice and reduced melanoma tumor mass and volume. Despite these positive changes, examination of the tumor tissue did not indicate any significant effects on proliferation, mitotic index, tissue vascularization, or reduction of αSMA or Ki-67 tumor markers. Modulation in overall expression of critical downstream αvβ3 integrin factors, such as FAK and Src, as well as reductions in gene expression of c-Fos and c-Jun transcription factors, indirectly confirmed our suspicions that ALOS4 is likely acting through an integrin-mediated pathway. Further, we found no overt formulation issues with ALOS4 regarding interaction with standard inert laboratory materials (polypropylene, borosilicate glass) or with pH and temperature stability under prolonged storage. Collectively, ALOS4 appears to be safe, chemically stable, and produces anti-cancer effects in a human xenograft model of melanoma. We believe these results suggest a role for ALOS4 in an integrin-mediated pathway in exerting its anti-cancer effects possibly through immune response modulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.