The purpose of this study is to explore the effects of working fluid on conventional combined cycle integrated with pressurized solid oxide fuel cell (SOFC) and waste heat recovery organic Rankine cycle (ORC) for stationary utility power generation. The mathematical model of a natural gas fueled design configuration is developed in Matlab and Simulink and simulated with 14 working fluids. The effluent gases of SOFC undergo combustion in the combustion chamber and it is utilized in the gas turbine, steam turbine cycle and ORC. The model is compared with those found in literature and the parametric studies of temperature, flow rate, fuel utilization factor and exhaust gas on the system efficiency are examined. Results revealed that working fluids show a closely related behavior in efficiency at low pressure ratio and high flow fraction, fuel utilization, and temperature. R-123 was found to perform the best among 14 working fluids studied, yielding a system energy efficiency of 70% in the combined cycle integrated with SOFC and ORC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.