This paper presents a new approach to solve Fractional Programming Problems (FPPs) based on two different Swarm Intelligence (SI) algorithms. The two algorithms are: Particle Swarm Optimization, and Firefly Algorithm. The two algorithms are tested using several FPP benchmark examples and two selected industrial applications. The test aims to prove the capability of the SI algorithms to solve any type of FPPs. The solution results employing the SI algorithms are compared with a number of exact and metaheuristic solution methods used for handling FPPs. Swarm Intelligence can be denoted as an effective technique for solving linear or nonlinear, nondifferentiable fractional objective functions. Problems with an optimal solution at a finite point and an unbounded constraint set, can be solved using the proposed approach. Numerical examples are given to show the feasibility, effectiveness, and robustness of the proposed algorithm. The results obtained using the two SI algorithms revealed the superiority of the proposed technique among others in computational time. A better accuracy was remarkably observed in the solution results of the industrial application problems.
Abstract-BatAlgorithm is a recently-developed method in the field of computational intelligence. In this paper is presented an improved version of a Bat Meta-heuristic Algorithm, (IBACH), for solving integer programming problems. The proposed algorithm uses chaotic behaviour to generate a candidate solution in behaviors similar to acoustic monophony. Numerical results show that the IBACH is able to obtain the optimal results in comparison to traditional methods (branch and bound), particle swarm optimization algorithm (PSO), standard Bat algorithm and other harmony search algorithms. However, the benefits of this proposed algorithm is in its ability to obtain the optimal solution within less computation, which save time in comparison with the branch and bound algorithm (exact solution method).
Time and space complexity is the most critical problem of the current routing optimization algorithms for Software Defined Networking (SDN). To overcome this complexity, researchers use meta-heuristic techniques inside the routing optimization algorithms in the OpenFlow (OF) based large scale SDNs. This paper proposes a hybrid meta-heuristic algorithm to optimize the dynamic routing problem for the large scale SDNs. Due to the dynamic nature of SDNs, the proposed algorithm uses a mutation operator to overcome the memory-based problem of the ant colony algorithm. Besides, it uses the box-covering method and the k-means clustering method to divide the SDN network to overcome the problem of time and space complexity. The results of the proposed algorithm compared with the results of other similar algorithms and it shows that the proposed algorithm can handle the dynamic network changing, reduce the network congestion, the delay and running times and the packet loss rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.