Narrowband Internet of Things (NB-IoT) is introduced by the third generation partnership project (3GPP) as a standardized technology for machine type communication (MTC) in Long Term Evolution (LTE). NB-IoT can satisfy many IoT requirements, Nevertheless, NB-IoT suffers a low data rate and low network capacity. This paper provides nonorthogonal multiple access (NOMA) scheme based matching game for uplink in NB-IoT systems to enhance the capacity and data rate by providing more connectivity for massive MTC devices. We formulate our optimization problem to maximize the total system rate by using a matching game. Simulation results show that the proposed scheme increases the total system rate by at least 150% and the system capacity by at least 125%, compared to OMA, and NOMA-water filling scheme.
Recently researchers were interested in hybrid algorithms for optimization problems for several communication systems. In this paper, a novel algorithm based on hybrid PSOGSA technique (combination of Gravitational Search Algorithm and Particle Swarm Optimization) is presented to enhance the performance analysis of beam-forming for smart antennas systems using N elements for Uniform Circular Array (UCA) geometry. Complex excitations (phases) of the array radiation pattern are optimized using hybrid PSOGSA technique for a set of simultaneously incident signals. Our results have shown tremendous improvement over the previous work was done using Uniform Linear Array (ULA) geometry and standard GSA in terms of normalized array factor and computational speed for normalized fitness values.
This paper presents the diffraction effects on the performance of a dual external cavity tunable laser source, whose external cavities are constructed by micro electro mechanical systems (ME-MS). One of the main problems in these structures is the optical diffraction as the emitting surface of the laser diode is usually quite limited in the transverse directions. The emitted beam diffracts rapidly in the air and only a small amount of light is coupled back to the source that usually limits the tuning range of the source. Device characteristics such as tuning range, wavelength shift and sensitivity are evaluated. New expression is used and multiple reflections inside external cavities are considered. The simulation results have shown that single external cavity has limited tuning range. It is shown that multiple reflections have significant effect in our model. To get a better engineering for the dual ECTL dimensions, diffraction effects must be taken into account.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.