Counting humans is an essential part of many people-centric applications. In this paper, we propose CROSS-COUNT: an accurate deep-learning-based human count estimator that uses a single WiFi link to estimate the human count in an area of interest. The main idea is to depend on the temporal link-blockage pattern as a discriminant feature that is more robust to wireless channel noise than the signal strength, hence delivering a ubiquitous and accurate human counting system. As part of its design, CROSSCOUNT addresses a number of deep learning challenges such as class imbalance and training data augmentation for enhancing the model generalizability. Implementation and evaluation of CROSSCOUNT in multiple testbeds show that it can achieve a human counting accuracy to within a maximum of 2 persons 100% of the time. This highlights the promise of CROSSCOUNT as a ubiquitous crowd estimator with non-labour-intensive data collection from off-theshelf devices.
Device-free localization (DFL) is an emerging technology for estimating the position of a human or object that is not equipped with any electronic tag, nor participate actively in the localization process. Similar to device-based localization, the initial phase in DFL is to build the fingerprint database which is usually done manually using site surveying. This process is tedious, time-consuming, and vulnerable to environmental dynamics. Motivated by the recent advances in the Internet of Things (IoT), this paper introduces RadioGrapher; a system that automates the process of device-free fingerprint calibration in IoT environments. RadioGrapher leverages the device-based locations of entities in the area of interest in a crowd-sensing manner, aided with Fresnel zones of the wirelessly connected IoT devices to automatically construct a device-free fingerprint.Experimental evaluation of RadioGrapher in an IoT testbed using multiple entities shows that it can construct DFL fingerprints with high accuracy. Moreover, its median localization accuracy is comparable to that of manual fingerprinting. This comes with no calibration overhead, highlighting the promise of RadioGrapher as a crowdsourcing device-free fingerprint constructor in IoT environments.
Abstract-Nowadays, multiprocessing is mainstream with exponentially increasing number of processors. Load balancing is, therefore, a critical operation for the efficient execution of parallel algorithms. In this paper we consider the fundamental class of tree-based algorithms that are notoriously irregular, and hard to load-balance with existing static techniques. We propose a hybrid load balancing method using the utility of statistical random sampling in estimating the tree depth and node count distributions to uniformly partition an input tree. To conduct an initial performance study, we implemented the method on an Intel R Xeon Phi TM accelerator system. We considered the tree traversal operation on both regular and irregular unbalanced trees manifested by Fibonacci and unbalanced (biased) randomly generated trees, respectively. The results show scalable performance for up to the 60 physical processors of the accelerator, as well as an extrapolated 128 processors case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.