5-Fluoro-2'-deoxyuridine (FUdR), a potent anticancer agent, exerts its effects by inhibiting thymidylate synthase, an essential machinery for DNA synthesis in cell proliferation. Also, cell death is caused by FUdR, primarily due to an imbalance in the nucleotide pool resulting from this enzyme inhibition. We have investigated the cancer cell death induced by FUdR, focusing on its molecular mechanisms. Using mouse mammary tumor FM3A cell lines, the original clone F28-7 and its variant F28-7-A cells, we previously reported an interesting observation that FUdR induces a necrotic morphology in F28-7, but induces, in contrast, an apoptotic morphology in F28-7-A cells. In the present study, to understand the molecular mechanisms underlying these differential cell deaths, i.e., necrosis and apoptosis, we investigated the gene expression changes occurring in these processes. Using the cDNA microarray technology, we found 215 genes being expressed differentially in the necrosis and apoptosis. Further analysis revealed differences between these cell lines in terms of the expressions of both a cluster of heat shock protein (HSP)-related genes and a cluster of apoptosis-related genes. Notably, inhibition of HSP90 in F28-7 cells caused a shift from the FUdR-induced necrosis into apoptosis. These findings are expected to lead to a better understanding of this anticancer drug FUdR for its molecular mechanisms and also of the general biological issue, necrosis and apoptosis.
Ribavirin (RBV) is often used in conjunction with interferon-based therapy for patients with chronic hepatitis C. There is a drastic difference in the anti-hepatitis C virus (HCV) activity of RBV between the HuH-7-derived assay system, OR6, possessing the RBV-resistant phenotype (50% effective concentration [EC 50 ]: >100 mM) and the recently discovered Li23-derived assay system, ORL8, possessing the RBV-sensitive phenotype (EC 50 : 8 mM; clinically achievable concentration). This is because the anti-HCV activity of RBV was mediated by the inhibition of inosine monophosphate dehydrogenase in RBV-sensitive ORL8 cells harboring HCV RNA. By means of comparative analyses using RBV-resistant OR6 cells and RBV-sensitive ORL8 cells, we tried to identify host factor(s) determining the anti-HCV activity of RBV. We found that the expression of adenosine kinase (ADK) in ORL8 cells was significantly higher than that in RBV-resistant OR6 cells harboring HCV RNA. Ectopic ADK expression in OR6 cells converted them from an RBV-resistant to an RBV-sensitive phenotype, and inhibition of ADK abolished the activity of RBV. We showed that the differential ADK expression between ORL8 and OR6 cells was not the result of genetic polymorphisms in the ADK gene promoter region and was not mediated by a microRNA control mechanism. We found that the 5' untranslated region (UTR) of ADK messenger RNA in ORL8 cells was longer than that in OR6 cells, and that only a long 5' UTR possessed internal ribosome entry site (IRES) activity. Finally, we demonstrated that the long 5' UTR functioned as an IRES in primary human hepatocytes. Conclusion: These results indicate that ADK acts as a determinant for the activity of RBV and provide new insight into the molecular mechanism underlying differential drug sensitivity. (HEPATOLOGY 2013;58:1236-1244 See Editorial on Page 1203 H epatitis C virus (HCV) is an enveloped RNA virus, the genome of which consists of a positive-stranded 9.6-kilobase (kb) RNA encoding 10 structural and nonstructural (NS) proteins. 1 The combination of pegylated-interferon (Peg-IFN) and ribavirin (RBV) was the standard treatment for patients with chronic hepatitis C (CHC) until last year, when a new triple-agent combination therapy using an inhibitor of HCV NS3-4A protease (i.e., either telaprevir or boceprevir), in combination with Peg-IFN and RBV, was started. 2 The sustained virologic response (SVR) rate of genotype 1 using this new therapy is expected to increase from 55% to more than 70%. 3 However, there has also been an increase in side effects by RBV in the triple therapy, including several severe side effects, such as skin rash by telaprevir, ageusia by boceprevir, and advanced anemia by telaprevir/boceprevir. 3,4
The extracellular portion of the granulocyte colonystimulating factor (G-CSF) receptor has a mosaic structure of six domains (each approximately 100 amino acid residues) consisting of an immunoglobulin-like (Ig) domain, a cytokine receptor homologous region subdivided into amino-terminal (BN) and carboxyl-terminal (BC) domains, and three fibronectin type III repeats. In the present study, we expressed the Ig-BN and the BN-BC regions and purified them to homogeneity as monomers using G-CSF affinity column chromatography. Using gel filtration high performance liquid chromatography, we investigated the molecular composition of receptor-ligand complexes formed between G-CSF and purified BN-BC or Ig-BN domains. In contrast to the well characterized example of the human growth hormone (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.