Whole-genome bisulfite sequencing (WGBS) is the current gold standard of methylome analysis. Post-bisulfite adaptor tagging (PBAT) is an increasingly popular WGBS protocol because of high sensitivity and low bias. PBAT originally relied on two rounds of random priming for adaptor-tagging of single-stranded DNA (ssDNA) to attain high efficiency but at a cost of library insert length. To overcome this limitation, we developed terminal deoxyribonucleotidyl transferase (TdT)-assisted adenylate connector-mediated ssDNA (TACS) ligation as an alternative to random priming. In this method, TdT attaches adenylates to the 3′-end of input ssDNA, which are then utilized by RNA ligase as an efficient connector to the ssDNA adaptor. A protocol that uses TACS ligation instead of the second random priming step substantially increased the lengths of PBAT library fragments. Moreover, we devised a dual-library strategy that splits the input DNA to prepare two libraries with reciprocal adaptor polarity, combining them prior to sequencing. This strategy ensured an ideal base–color balance to eliminate the need for DNA spike-in for color compensation, further improving the throughput and quality of WGBS. Adopting the above strategies to the HiSeq X Ten and NovaSeq 6000 platforms, we established a cost-effective, high-quality WGBS, which should accelerate various methylome analyses.
Background: Endoscopic submucosal dissection (ESD) can be used as a less invasive treatment option for superficial esophageal cancer involving the muscularis mucosae (T1a-MM) or upper third of the submucosa (T1b-SM1). Additional treatment after ESD is needed to prevent lymph node metastasis. However, the efficacy of radiotherapy following ESD has not been well evaluated. Moreover, the clinical outcomes of patients with large mucosal defects of the esophagus who received radiotherapy after ESD have not been reported. This study aimed to clarify the efficacy of additional radiotherapy following ESD for esophageal squamous cell cancer involving T1a-MM or T1b-SM1.
Background Cell-free DNA (cfDNA), which is extracellular DNA present in the circulating plasma and other body fluids, is currently investigated as a minimally invasive, highly informative biomarker. While nucleosome-sized cfDNA fragments have been investigated intensively, shorter DNA fragments in the plasma have not been studied due to several technical limitations. Results We aimed to investigate the existence of shorter cfDNA fragments in the blood. Using an improved cfDNA purification protocol and a 3′-end-labeling method, we found DNA fragments of approximately 50 nucleotides in length in the human plasma, present at a molar concentration comparable to that of nucleosome-sized fragments. Unfortunately, these short fragments cannot be recovered by widely used cfDNA isolation methods. In addition, they are composed of single-stranded DNA (ssDNA), thus escaping detection in previous studies. Therefore, we established a library-preparation protocol based on our unique ssDNA ligation technique and applied it to the isolated cfDNA. Deep sequencing of these libraries revealed that the short fragments are derived from hundreds of thousands of genomic sites in open chromatin regions and enriched with transcription factor-binding sites. Remarkably, antisense strands of putative G-quadruplex motifs occupy as much as one-third of the peaks by these short fragments. Conclusions We propose a new class of plasma cfDNA composed of short single-stranded fragments that potentially form non-canonical DNA structures.
Cell‐free DNA (cfDNA) in human blood is currently being investigated as a minimally invasive, highly informative biomarker. Besides carrying genetic variations, cfDNA can also provide useful epigenetic information through its methylation and fragmentation pattern. Previous cfDNA studies have focused on nucleosome‐sized fragments, leaving shorter ones neglected. Hence, we intended to investigate whether shorter cfDNA fragments exist in the blood or not. Using an improved cfDNA purification protocol and a 3ʹ‐end labeling method, we found that human plasma contains DNA fragments of approximately 50 nucleotides, present at a molar concentration largely comparable to that of the nucleosome‐sized fragments. These short fragments cannot be recovered by using popular cfDNA isolation methods, and they are composed of single‐stranded DNA (ssDNA), thus escaping detection in previous studies. We established a library preparation protocol based on a ssDNA ligation technique unique developed by us and applied it to cfDNA isolated with the improved purification protocol. Deep sequencing of these libraries revealed that the short fragments are derived from hundreds of thousands of genomic sites in open chromatin regions and enriched with transcription factor‐binding sites. Remarkably, antisense strands of putative G‐quadruplex motifs occupy as much as one‐third of these short fragments. Hence, we propose a novel class of plasma cfDNA composed of short single‐stranded fragments that potentially form non‐canonical DNA structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.