Starting from the purine lead structure 1, a new series of cathepsin K inhibitors based on a pyrimidine scaffold have been explored. Investigations of P3 and P2 substituents based on molecular modeling suggestions resulted in potent cathepsin K inhibitors with an improved selectivity profile over other cathepsins.
On the basis of the pyrrolopyrimidine core structure that was previously discovered, cathepsin K inhibitors having a spiro amine at the P3 have been explored to enhance the target, bone marrow, tissue distribution. Several spiro structures were identified with improved distribution toward bone marrow. The representative inhibitor 7 of this series revealed in vivo reduction in C-terminal telopeptide of type I collagen in rats and monkeys.
Cathepsin S inhibitors are well-known to be an attractive target as immunological therapeutic agents. Recently, our gene expression analysis identified that cathepsin S inhibitors could also be effective for neuropathic pain. Herein, we describe the efficacy of selective cathepsin S inhibitors as antihyperalgesics in a model of neuropathic pain in rats after oral administration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.