The metabolism of 20:4 (arachidonic acid) in alkenylacyl, alkylacyl and diacyl lipid classes in choline glycerophospholipids (CGP) and ethanolamine glycerophospholipids (EGP) in rabbit alveolar macrophages was examined. [3H]20:4 was very rapidly incorporated into diacyl glycerophosphocholine (GPC). After the removal of free 20:4, the radioactivity was gradually lost from diacyl GPC. Concomitantly, the radioactivities in alkylacyl GPC and alkenylacyl glycerophosphoethanolamine (GPE) were increased, indicating that 20:4 was mobilized from diacyl GPC to alkylacyl GPC and alkenylacyl GPE. The mobilization was considered to be a 20:4‐specific event. The gradual accumulation of 20:4 in ether phospholipids leads to a high abundance of 20:4 in these lipids. These results suggest metabolic relationships between 20:4 and ether phospholipids, including platelet‐activating factor (PAF).
Seven healthy volunteers and 3 hospitalized patients were given the same diet for 6 days. The mean intake of cholesterol was 359 mg/day. There was a large difference in the fecal amount of cholesterol and coprostanol amongthe subjects. The ratio of coprostanol/cholesterol ranged from 0.01 to 4.27. The subjects whose feces contained smaller amountof coprostanol excreted larger amounts of jS-sitosterol and crude fiber, suggesting that the various activities of intestinal flora were lower than the other subjects. The difference in the activity of intestinal flora to convert cholesterol into coprostanol was ascertained by incubating the feces anaerobically with egg yolk in vitro. It was also demonstrated that cholesterol was synthesized de novo and the amount corresponded to 0.1-0.6 g/day. The amounts of sterols in the feces of the other 17 hospitalized patients were also determined and there was an inverse relationship between the serum cholesterol and coprostanol/cholesterol ratio in the feces. These results suggested that the conversion of cholesterol into coprostanol by the intestinal flora might have an important role in the regulation of serum cholesterol level.
The present study developed a simplified decision-tree algorithm for fall prediction with easily measurable predictors using data from a longitudinal cohort study: 2520 community-dwelling older adults aged 65 years or older participated. Fall history, age, sex, fear of falling, prescribed medication, knee osteoarthritis, lower limb pain, gait speed, and timed up and go test were assessed in the baseline survey as fall predictors. Moreover, recent falls were assessed in the follow-up survey. We created a fall-prediction algorithm using decision-tree analysis (C5.0) that included 14 nodes with six predictors, and the model could stratify the probabilities of fall incidence ranging from 30.4% to 71.9%. Additionally, the decision-tree model outperformed a logistic regression model with respect to the area under the curve (0.70 vs. 0.64), accuracy (0.65 vs. 0.62), sensitivity (0.62 vs. 0.50), positive predictive value (0.66 vs. 0.65), and negative predictive value (0.64 vs. 0.59). Our decision-tree model consists of common and easily measurable fall predictors, and its white-box algorithm can explain the reasons for risk stratification; therefore, it can be implemented in clinical practices. Our findings provide useful information for the early screening of fall risk and the promotion of timely strategies for fall prevention in community and clinical settings.
ObjectivesPathological pain such as phantom limb pain is caused by sensorimotor incongruence. Several studies with healthy participants have clearly indicated that dysesthesia, which is similar to pathological pain, is caused by incongruence between proprioception and/or motor intention and visual feedback. It is not clear to what extent dysesthesia may be caused by incongruence between motor intention and visual feedback or by incongruence between proprioception and visual feedback. The aim of this study was to clarify the neurophysiology of these factors by analyzing electroencephalograms (EEGs).MethodsIn total, 18 healthy participants were recruited for this study. Participants were asked to perform repetitive flexion/extension exercises with their elbows in a congruent/incongruent position while viewing the activity in a mirror. EEGs were performed to determine cortical activation during sensorimotor congruence and incongruence.ResultsIn the high-frequency alpha band (10–12 Hz), numeric rating scale scores of a feeling of peculiarity were significantly correlated with event-related desynchronization/synchronization under the incongruence and proprioception conditions associated with motor intention and visual feedback (right inferior parietal region; r=−0.63, P<0.01) and between proprioception and visual feedback (right temporoparietal region; r=−0.49 and r=−0.50, P<0.05). In these brain regions, there was a region in which incongruence between proprioception and visual feedback and between motor intention and visual feedback caused an increase in activity.ConclusionThe present findings suggest that neural mechanisms of dysesthesia are caused by incongruence between proprioception associated with motor intention and visual feedback and, in particular, are a result of incongruence between proprioception only and visual feedback.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.