The possible participation of cyclic AMP in the stress‐induced synthesis of two small stress proteins, hsp27 and αB‐crystallin, in C6 rat glioma cells was examined by specific immunoassays, western blot analysis, and northern blot analysis. When C6 cells were exposed to arsenite (50–100 µM for 1 h) or heat (42°C for 30 min), expression of hsp27 and αB‐crystallin was stimulated, with levels of the two proteins reaching a maximum after 10–16 h of culture. Induction of hsp27 was markedly enhanced when cells were exposed to arsenite in the presence of isoproterenol (20 µM) or epinephrine (20 µM) but not in the presence of phenylephrine. The stimulatory effects of isoproterenol and epinephrine were blocked completely by propranolol, an antagonist of β‐adrenergic receptors. Cholera toxin (2 µg/ml), forskolin (20 µM), and dibutyryl cyclic AMP (2.5 mM), all of which are known to increase intracellular levels of cyclic AMP, also stimulated the arsenite‐ or heat‐induced accumulation of hsp27. Treatment of cells with each of these modulators alone did not result in the induction of hsp27. The level of hsp70 in C6 cells, as estimated by western blot analysis, was also enhanced by arsenite or heat stress. However, induction of hsp70 by stress was barely stimulated by isoproterenol. By contrast, induction of αB‐crystallin by heat or arsenite stress was suppressed when isoproterenol, cholera toxin, forskolin, or dibutyryl cyclic AMP was present during the stress period. Northern blot analysis of the expression of mRNAs for hsp70, hsp27, and αB‐crystallin showed that the modulation of the stress‐induced accumulation of the three hsps by the various agents was regulated at the level of the corresponding mRNA. These results indicate that stress responses of hsp70, hsp27, and αB‐crystallin in C6 rat glioma cells are regulated differently and, moreover, that when the level of cyclic AMP increases in cells, the response to stress of hsp27 is stimulated but that of αB‐crystallin is suppressed.
BackgroundInterleukin (IL)-6 plays a pivotal role in a variety of CNS functions such as the induction and modulation of reactive astrogliosis, pathological inflammatory responses and neuroprotection. Tumor necrosis factor (TNF)-α induces IL-6 release from rat C6 glioma cells through the inhibitory kappa B (IκB)-nuclear factor kappa B (NFκB) pathway, p38 mitogen-activated protein (MAP) kinase and stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK). The present study investigated the mechanism of TNF-α-induced IL-6 release in more detail than has previously been reported.MethodsCultured C6 cells were stimulated by TNF-α. IL-6 release from the cells was measured by an enzyme-linked immunosorbent assay, and the phosphorylation of IκB, NFκB, the MAP kinase superfamily, and signal transducer and activator of transcription (STAT)3 was analyzed by Western blotting. Levels of IL-6 mRNA in cells were evaluated by real-time reverse transcription-polymerase chain reaction.ResultsTNF-α significantly induced phosphorylation of NFκB at Ser 536 and Ser 468, but not at Ser 529 or Ser 276. Wedelolactone, an inhibitor of IκB kinase, suppressed both TNF-α-induced IκB phosphorylation and NFκB phosphorylation at Ser 536 and Ser 468. TNF-α-stimulated increases in IL-6 levels were suppressed by wedelolactone. TNF-α induced phosphorylation of STAT3. The Janus family of tyrosine kinase (JAK) inhibitor I, an inhibitor of JAK 1, 2 and 3, attenuated TNF-α-induced phosphorylation of STAT3 and significantly reduced TNF-α-stimulated IL-6 release. Apocynin, an inhibitor of NADPH oxidase that suppresses intracellular reactive oxygen species, significantly suppressed TNF-α-induced IL-6 release and mRNA expression. However, apocynin failed to affect the phosphorylation of IκB, NFκB, p38 MAP kinase, SAPK/JNK or STAT3.ConclusionThese results strongly suggest that TNF-α induces IL-6 synthesis through the JAK/STAT3 pathway in addition to p38 MAP kinase and SAPK/JNK in C6 glioma cells, and that phosphorylation of NFκB at Ser 536 and Ser 468, and NADPH oxidase are involved in TNF-α-stimulated IL-6 synthesis.
We have determined the primary structure of a novel ␥ subunit (␥ 12 , previously designated ␥ S1 ) of G protein purified from bovine spleen. The mature ␥ 12 protein composed of 68 amino acids had acetylated serine at the N terminus and geranylgeranylated/carboxylmethylated cysteine at the C terminus. This was consistent with the C-terminal prenylation signal in the amino acid sequence, which was predicted from ␥ 12 cDNA isolated from a bovine spleen cDNA library. Western blots with the specific antibody against ␥ 12 showed that ␥ 12 is present in all tissues examined. Among various ␥ subunits (␥ 1 , ␥ 2 , ␥ 3 , ␥ 7 , and ␥ 12 ), ␥ 12 has a unique property to be phosphorylated by protein kinase C. The phosphorylated amino acid residue was Ser 1 (or Ser
Recent studies indicate that receptor tyrosine kinases (RTKs), which play important roles in cell proliferation, are one of the possible targets of green tea catechins (GTCs) in cancer cell growth inhibition. (-)-Epigallocatechin-3-gallate (EGCG), the major catechin in green tea, inhibits cell proliferation and induces apoptosis in various types of cancer cells, including colorectal cancer and hepatocellular carcinoma cells, by blocking the activation of the epidermal growth factor receptor (EGFR) family of RTKs. EGCG inhibits the activation of insulin-like growth factor-1 receptor (IGF-1R) and VEGFR2, the other members of the RTK family, and this effect is also associated with the anticancer and chemopreventive properties of this agent. EGCG suppresses the activation of EGFR in part by altering membrane lipid organization and causing the subsequent inhibition of the dimerization and activation of this receptor. Preliminary trials have shown that GTCs successfully prevent the development and progression of precancerous lesions, such as colorectal adenomas, without causing severe adverse effects. The present report reviews evidence indicating that GTCs exert anticancer and chemopreventive effects by inhibiting the activation of specific RTKs, especially EGFR, IGF-1R, and VEGFR2, and concludes that targeting RTKs and their related signaling pathways by using tea catechins could be a promising strategy for the prevention of human cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.