Here we show that amides of bicyclic 7-azabicyclo[2.2.1]heptane are intrinsically nitrogen-pyramidal. Single-crystal X-ray diffraction structures of some relevant bicyclic amides, including the prototype N-benzoyl-7-azabicyclo[2.2.1]heptane, exhibited nitrogen-pyramidalization in the solid state. We evaluated the rotational barriers about the amide bonds of various N-benzoyl-7-azabicyclo[2.2.1]heptanes in solution. The observed reduction of the rotational barriers of the bicyclic amides, as compared with those of the monocyclic pyrrolidine amides, is consistent with a nitrogen-pyramidal structure of 7-azabicyclo[2.2.1]heptane amides in solution. A good correlation was found between the magnitudes of the rotational barrier of N-benzoyl-7-azabicyclo[2.2.1]heptanes bearing para-substituents on the benzoyl group and the Hammett's sigma(p)(+) constants, and this is consistent with the similarity of the solution structures. Calculations with the density functional theory reproduced the nitrogen-pyramidal structures of these bicyclic amides as energy minima. The calculated magnitudes of electron delocalization from the nitrogen nonbonding n(N) orbital to the carbonyl pi orbital of the amide group evaluated by application of the bond model theory correlated well with the rotational barriers of a variety of amides, including amides of 7-azabicyclo[2.2.1]heptane. The nonplanarity of the amide nitrogen of 7-azabicyclo[2.2.1]heptanes would be derived from nitrogen-pyramidalization due to the CNC angle strain and twisting of the amide bond due to the allylic strain.
We report that the optical polarization in the afterglow of GRB 091208B is measured at t = 149 − 706 s after the burst trigger, and the polarization degree is P = 10.4% ± 2.5%. The optical light curve at this time shows a power-law decay with index −0.75 ± 0.02, which is interpreted as the forward shock synchrotron emission, and thus this is the first detection of the early-time optical polarization in the forward shock (rather than that in the reverse shock reported by (Steele et al. 2009)). This detection disfavors the afterglow model in which the magnetic fields in the emission region are random on the plasma skin depth scales, such as amplified by the plasma instabilities, e.g., Weibel instability. We suggest that the fields are amplified by the magnetohydrodynamic instabilities, which would be tested by future observations of the temporal changes of the polarization degrees and angles for other bursts.
We presented optical and near-infrared multi-band linear polarimetry of the highly reddened Type Ia SN 2014J appeared in M82. SN 2014J exhibits large polarization at shorter wavelengths, e.g., 4.8% in B band, and the polarization decreases rapidly at longer wavelengths, with the position angle of the polarization remaining at approximately 40 • over the observed wavelength range. These polarimetric properties suggest that the observed polarization is likely to be caused predominantly by the interstellar dust within M82. Further analysis shows that the polarization peaks at a wavelengths much shorter than those obtained for the Galactic dust. The wavelength dependence of the polarization can be better described by an inverse power law rather than by Serkowski law for Galactic interstellar polarization. These suggests that the nature of the dust in M82 may be different from that in our Galaxy, with polarizing dust grains having a mean radius of < 0.1 µm .
We report on optical-near-infrared photopolarimetric observations of a blazar 3C 454.3 over 200 d. The object experienced an optical outburst in July 2007. This outburst was followed by a short state fainter than V = 15.2 mag lasting ∼ 25 d. The object, then, entered an active state during which we observed short flares having a timescale of 3-10 d. The object showed two types of features in the color-magnitude relationship. One is a "bluer-when-brighter" trend in the outburst state, and the other is a "redder-whenbrighter" trend in the faint state. These two types of features suggest a contribution of a thermal emission to the observed flux, as suspected in previous studies. Our polarimetric observation detected two episodes of the rotation of the polarization vector. The first one was a counterclockwise rotation in the QU plane during the outburst state. After this rotation event of the polarization vector, the object entered a rapidly fading stage. The second one was seen in a series of flares during the active state. Each flare had a specific position angle of polarization, and it apparently rotated clockwise from the first to the last flares. Thus, the object exhibited rotations of the polarization vector in opposite directions. We estimated a decay timescale of the short flares during the active state, and then calculated an upper limit of the strength of the magnetic field, B=0.2 G, assuming a typical beaming factor of blazars, δ = 20. This upper limit of B is smaller than those previously estimated from spectral analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.