In this study, we developed a method of measuring the intensity of rays scattered from a molybdenum/silicon (Mo/Si) multilayer film using an extreme ultraviolet (EUV) reflectometer. We examined the correlations between the peak reflectance, the interfacial roughness of multilayer films, and the substrate roughness. We measured the intensity of scattered rays 13.5 nm from the substrate surface for normal smooth quartz (NSQz), supersmooth quartz (SSQz), and Si substrates using the EUV reflectometer. The intensity of rays scattered from the substrate surface was proportional to the atomic force microscopy (AFM) roughness of the surface. For NSQz, there was a particular strong correlation between the surface roughness determined by AFM and the intensity of scattering rays determined using the EUV reflectometer. However, a week correlation was observed for SSQz and Si. The precisions of the AFM and X-ray reflectivity (XRR) measurement were low for the quartz substrate. A direct measurement of the intensity of rays scattered from the substrate surface was used to estimate the relative surface roughness independent of the substrate material. The EUV reflectivity and intensity of rays scattered from the Mo/Si multilayer films with two deposition geometries were measured using the EUV reflectometer. The peak reflectivity was related to the substrate roughness for each deposition geometry. Moreover, the peak reflectivity was related to the intensity of rays scattered from the multilayer films and was not influenced by the deposition geometry. The results obtained using the EUV reflectometer showed an obvious relationship between the intensity of scattering rays and the interfacial roughness of multilayer films.
We developed an accurate method for determining the optical index of Ta and Ta-based absorber layers with added nitrogen, oxygen, and boron for an extreme ultraviolet (EUV) mask using EUV reflectometry. The optical index at EUV wavelengths was derived from the density and atomic concentration of the composite materials. The atomic concentrations of Ta and Ta-based absorbers were determined using X-ray photoelectron spectroscopy (XPS) and Rutherford backscattering spectrometry (RBS) analysis methods when no inconsistency occurred between the results of the XPS and RBS analyses. The volume densities of the Ta and Ta-based absorbers were determined using RBS and EUV reflectivity measurements with the grazing angle (EUVRG) or reflectivity (EUVR) when no inconsistency was observed between results. Deriving the volume density was necessary to establish the layer structure and layer thickness, and the surface oxidation layer was especially important for determining the correct volume density. The layer structure and thickness were derived using a pattern-fitting method for the XRR spectrum. The extinction coefficients of Ta and Ta-based absorbers stacked using conventional sputtering were lower than the extinction coefficient of an ideal Ta crystal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.