Multiple genetic aberrations in human gliomas contribute to their highly infiltrative and rapid growth characteristics. Focal adhesion kinase (FAK) regulates tumor migration and invasion. Insulin-like growth factor-I receptor (IGF-IR), whose expression correlates with tumor grade, is involved in proliferation and survival. We hypothesized that inhibiting the phosphorylation of FAK and IGF-IR by NVP-TAE226 (hereafter called TAE226), a novel dual tyrosine kinase inhibitor of FAK and IGF-IR, would suppress the growth and invasion of glioma cells. In culture, TAE226 inhibited extracellular matrix -induced autophosphorylation of FAK (Tyr 397 ). TAE226 also inhibited IGF-I -induced phosphorylation of IGF-IR and activity of its downstream target genes such as MAPK and Akt. TAE226 retarded tumor cell growth as assessed by a cell viability assay and attenuated G 2 -M cell cycle progression associated with a decrease in cyclin B1 and phosphorylated cdc2 (Tyr 15 ) protein expression. TAE226 treatment inhibited tumor cell invasion by at least 50% compared with the control in an in vitro Matrigel invasion assay. Interestingly, TAE226 treatment of tumor cells containing wild-type p53 mainly exhibited G 2 -M arrest, whereas tumor cells bearing mutant p53 underwent apoptosis. Induction of apoptosis by TAE226 was substantiated by detection of caspase-3/7 activation and poly(ADP-ribose) polymerase cleavage and by an Annexin V apoptosis assay. More importantly, TAE226 treatment significantly increased the survival rate of animals in an intracranial glioma xenograft model. Collectively, these data show that blocking the signaling pathways of FAK and IGF-IR with TAE226 has the potential to be an efficacious treatment for human gliomas.
Glioblastomas are highly lethal cancers that resist current therapies. Novel therapies under development target molecular mechanisms that promote glioblastoma growth. In glioblastoma patient specimens, the non-receptor tyrosine kinase focal adhesion kinase (FAK) is overexpressed. Upon growth factor receptor stimulation or integrin engagement, FAK is activated by phosphorylation on critical tyrosine residues. Activated FAK initiates a signal transduction cascade which promotes glioma growth and invasion by increasing cellular adhesion, migration, invasion, and proliferation. We find that human glioma cell lines express different levels of total FAK protein and activating phosphorylation of tyrosine residues Tyr397, Tyr861, and Tyr925. As all glioma cell lines examined expressed phosphorylated FAK, we examined the efficacy of a novel low-molecular weight inhibitor of FAK, TAE226, against human glioma cell lines. TAE226 inhibited the phosphorylation of FAK as well as the downstream effectors AKT, extracellular signal-related kinase, and S6 ribosomal protein in multiple glioma cell lines. TAE226 induced a concentration-dependent decrease in cellular proliferation with an associated G(2) cell cycle arrest in every cell line and an increase in apoptosis in a cell-line-specific manner. TAE226 also decreased glioma cell adhesion, migration, and invasion through an artificial extracellular matrix. Together, these data demonstrate the potential benefit of TAE226 for glioma therapy.
Nitric oxide (NO) has been identified as a widespread and multifunctional biological messenger molecule in the central nervous system (CNS), with possible roles in neurotransmission, neurosecretion, synaptic plasticity, and tissue injury in many neurological disorders, including schizophrenia. Neuronal NO is widely produced in the brain from L-arginine catalyzed by neuronal NO synthase (NOS1). We therefore hypothesized that the NOS1 gene may play a role in the pathophysiology of schizophrenia. In the present study, we examined the genetic association between a novel single nucleotide polymorphism (SNP: a C→T transition located 276 base pairs downstream from the translation termination site) of the human NOS1 gene, which is located in chromosome 12q24, and schizophrenia (215 Japanese patients with schizophrenia and 182 healthy controls). The allele frequencies of the polymorphism in exon 29 of the NOS1 gene differed significantly between patients with schizophrenia and controls ( 2 = 20.10, df = 1, P = 0.000007; relative risk = 1.92; 95% confidence interval = 1.44-2.55). Our results suggest that the NOS1 gene polymorphism may confer increased susceptibility to schizophrenia.
A coordination network prepared from Cd(NO3)2 and 4,4'-bipyridine (4,4'-bpy) catalyzed the cyanosilylation of imines under heterogeneous conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.