Basigin is a highly glycosylated transmembrane protein with two immunoglobulin-like domains. We generated mutant mice lacking the basigin gene (Bsg) by gene targeting. Bsg (-/-) embryos developed normally during preimplantation stages. However, the majority of Bsg (-/-) embryos died around the time of implantation. At this time, basigin mRNA was strongly expressed in the trophectoderm, embryo proper, and uterine endometrium of Bsg (+/+) mice. These results suggest that basigin is involved in intercellular recognition during implantation. Embryos which survived the critical period yielded Bsg (-/-) mutant mice. Half of the mutant mice died before 1 month after birth, due to interstitial pneumonia. The surviving adult mutant mice were small and sterile. Spermatogenesis was arrested in the mutant mice. Most of the spermatocytes in the Bsg (-/-) mouse were arrested and degenerated at the metaphase of the first meiosis, and only a small number differentiated to step 1 spermatids. In the female mutants, the ovaries and genital tract were morphologically normal, and the defect was probably in the capability of implantation of the uterus. In conclusion, basigin is an important cell-surface molecule involved in early embryogenesis and reproduction.
To investigate the function of NF-κB RelA (p65), we generated mice deficient in this NF-κB family member by homologous recombination. Mice lacking RelA showed liver degeneration and died around embryonic day 14.5. To elucidate the role of RelA in lymphocyte development and function, we transplanted fetal liver cells of 13.5-day embryos from heterozygote matings into irradiated SCID mice. Within 4 weeks, both T and B cells had developed in the SCID mice receiving relA−/− fetal liver transplants, similar to the relA+/+ and +/− cases. T cells were found to mature to Thy-1+/TCRαβ+/CD3+/CD4+ or CD8+, while B cells had the ability to differentiate to IgM+/B220+ and to secrete immunoglobulins. However, the secretion of IgG1 and IgA was reduced in RelA-deficient B cells. Furthermore, both T and B cells lacking RelA showed marked reduction in proliferative responses to stimulation with Con A, anti-CD3, anti-CD3+anti-CD28, LPS, anti-IgM, and PMA+calcium ionophore. The results indicate that RelA plays a critical role in production of specific Ig isotypes and also in signal transduction pathways for lymphocyte proliferation.
Objective To determine the efficacy of a 23-valent pneumococcal polysaccharide vaccine in people at high risk of pneumococcal pneumonia.Design Prospective, randomised, placebo controlled double blind study.Setting Nursing homes in Japan.Participants 1006 nursing home residents.Interventions Participants were randomly allocated to either 23-valent pneumococcal polysaccharide vaccine (n=502) or placebo (n=504).Main outcome measures The primary end points were the incidence of all cause pneumonia and pneumococcal pneumonia. Secondary end points were deaths from pneumococcal pneumonia, all cause pneumonia, and other causes.Results Pneumonia occurred in 63 (12.5%) participants in the vaccine group and 104 (20.6%) in the placebo group. Pneumococcal pneumonia was diagnosed in 14 (2.8%) participants in the vaccine group and 37 (7.3%) in the placebo group (P<0.001). All cause pneumonia and pneumococcal pneumonia were significantly more frequent in the placebo group than in the vaccine group: incidence per 1000 person years 55 v 91 (P<0.0006) and 12 v 32 (P<0.001), respectively. Death from pneumococcal pneumonia was significantly higher in the placebo group than in the vaccine group (35.1% (13/37) v 0% (0/14), P<0.01). The death rate from all cause pneumonia (vaccine group 20.6% (13/63) v placebo group 25.0% (26/104), P=0.5) and from other causes (vaccine group 17.7% (89/502) v placebo group (80/504) 15.9%, P=0.4) did not differ between the two study groups.Conclusion The 23-valent pneumococcal polysaccharide vaccine prevented pneumococcal pneumonia and reduced mortality from pneumococcal pneumonia in nursing home residents.Trial registration Japan Medical Association Center for Clinical Trials JMA-IIA00024.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.