The movements of cytoplasmic dynein on microtubule (MT) tracks is achieved by two-way communication between the microtubule-binding domain (MTBD) and the ATPase domain via a coiled-coil stalk, but the structural basis of this communication remains elusive. Here, we regulate MTBD either in high-affinity or low-affinity states by introducing a disulfide bond to the stalk and analyze the resulting structures by NMR and cryo-EM. In the MT-unbound state, the affinity changes of MTBD are achieved by sliding of the stalk α-helix by a half-turn, which suggests that structural changes propagate from the ATPase-domain to MTBD. In addition, MT binding induces further sliding of the stalk α-helix even without the disulfide bond, suggesting how the MT-induced conformational changes propagate toward the ATPase domain. Based on differences in the MT-binding surface between the high-and lowaffinity states, we propose a potential mechanism for the directional bias of dynein movement on MT tracks.
The movements of cytoplasmic dynein on microtubule (MT) tracks is achieved by two-way communication between the microtubule-binding domain (MTBD) and the ATPase domain of dynein via an a-helical coiled-coil stalk, but the structural basis of this communication remains elusive. Here, we regulated MTBD either in high-affinity or low-affinity states by introducing a disulfide bond between the coiled-coils and analyzed the resulting structures by NMRand cryo-EM.In the MT-unbound state, the affinity changes of MTBD were achieved by sliding of the N-terminal α-helix by one half-turn, which suggests that structural changes propagate from the ATPase-domain to MTBD. In addition, cryo-EM analysis showed that MT binding induced further sliding of the N-terminal α-helix even without the disulfide bond, which suggests the MT-induced conformational changes propagate toward the ATPase domain. Based on differences in the MT-binding surface between the high-and low-affinity states, we propose a potential mechanism for the directional bias of dynein movement on MT tracks. Nishida et al.
Cytoplasmic dynein is a motor protein that walks toward the minus end of microtubules (MTs) by utilizing the energy of ATP hydrolysis. The heavy chain of cytoplasmic dynein contains the microtubule-binding domain (MTBD). Switching of MTBD between high and low affinity states for MTs is crucial for processive movement of cytoplasmic dynein. Previous biochemical studies demonstrated that the affinity of MTBD is regulated by the AAA+ family ATPase domain, which is separated by 15 nm long coiled-coil helix. In order to elucidate the structural basis of the affinity switching mechanism of MTBD, we designed two MTBD constructs, termed MTBD-High and MTBD-Low, which are locked in high and low affinity state for MTs, respectively, by introducing a disulfide bond between the coiled-coil helix. Here, we established the backbone and side-chain assignments of MTBD-High and MTBD-Low for further structural analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.