Automated bowel sound (BS) analysis methods were already well developed by the early 2000s. Accuracy of ~90% had been achieved by several teams using various analytical approaches. Clinical research on BS had revealed their high potential in the non-invasive investigation of irritable bowel syndrome to study gastrointestinal motility and in a surgical setting. This article proposes a novel methodology for the analysis of BS using hybrid convolutional and recursive neural networks. It is one of the first methods of using deep learning to be widely explored. We have developed an experimental pipeline and evaluated our results with a new dataset collected using a device with a dedicated contact microphone. Data have been collected at night-time, which is the most interesting period from a neurogastroenterological point of view. Previous works had ignored this period and instead kept brief records only during the day. Our algorithm can detect bowel sounds with an accuracy >93%. Moreover, we have achieved a very high specificity (>97%), crucial in diagnosis. The results have been checked with a medical professional, and they successfully support clinical diagnosis. We have developed a client-server system allowing medical practitioners to upload the recordings from their patients and have them analyzed online. This system is available online. Although BS research is technologically mature, it still lacks a uniform methodology, an international forum for discussion, and an open platform for data exchange, and therefore it is not commonly used. Our server could provide a starting point for establishing a common framework in BS research.
Nowadays, in the age of big data and more data generation, there is a growing need to store and process large-scale data in real-time which has led to the deployment of cloud computing. The significant growth of the DC market has led to its rapid growth of power consumption as well as cost. By 2025, the DC market is predicted to account Abstract Nowadays, the fast rate of technological advances, such as cloud computing, has led to the rapid growth of the Data Center (DC) market as well as their power consumption. Therefore, DC power management has become increasingly important. While power forecasting can greatly help DC power management and reduce energy consumption and cost. Power forecasting predicts the potential energy failures or sudden fluctuations in power intake from utility grid. However, it is hard especially when variable renewable energies (RE) as well as free cooling such as air economizers are also used. Geo-distributed DCs face an even harder issue: since in addition to local conditions, the overall status of the entire system of collaborating DCs should also be considered. The conventional approach to forecast power consumption in such complicated cases is to construct a closed form formula for power. This is a tedious task that not only needs expert knowledge of how each single cooling or RE system works, but also needs to be done individually for each DC and repeated all over again for each new DC or change of equipment. One alternative is to use machine learning so as to learn over time how the system consumes power in varying conditions of weather, workload, and internal structure in multiple geo-distributed locations. However, due to the wide range of effective features as well as trade-off between the accuracy and processing overhead, one important issue is to obtain an optimal set of more influential features. In this study, we analyze the correlation among geo-distributed DC power patterns with their weather parameters (based on different DC situations and infrastructure) and extract a set of influential features. Afterward, we apply the obtained features to provide a power consumption forecasting model that predict the power pattern of each collaborating DC in a cloud. Our experimental results show that the proposed prediction model for geo-distributed DCs reaches the accuracy of 87.2%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.