Abstract. An experimental study aimed at sensing the stress distribution characteristics of inclusions inside particulate assemblies subjected to axial compaction is presented. The particulate assemblies are made of powders and grains, in which photoelastic inclusions are embedded along the central axis of the assemblies at different elevations. Digital photo stress analysis tomography is used to obtain the contours of maximum shear-stress distribution and the direction of major principal stress within the inclusions under the external loading. Using this, an analysis is performed for understanding the implications of using Hertz theory based on discrete element modeling for simulating stresses in relatively big inclusions surrounded by particulates. In the case of the inclusions surrounded by the grains, the location at which the peak value in maximum shear stresses occurs within the inclusions deviates from that of Hertzian analysis. This effect is dominant in the case of inclusions residing close to the loading surface. Unlike granular materials, shear-stress distribution characteristics of inclusions in powder surroundings tend to display continuum-like behavior under external compression and points to the need for a deeper understanding of the effects of the surrounding materials in particulate beds with inclusions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.