How mixtures of immune cells associate with cancer cell phenotype and affect pathogenesis is still unclear. In 15 breast cancer gene expression datasets, we invariably identify three clusters of patients with gradual levels of immune infiltration. The intermediate immune infiltration cluster (Cluster B) is associated with a worse prognosis independently of known clinicopathological features. Furthermore, immune clusters are associated with response to neoadjuvant chemotherapy. In silico dissection of the immune contexture of the clusters identified Cluster A as immune cold, Cluster C as immune hot while Cluster B has a pro-tumorigenic immune infiltration. Through phenotypical analysis, we find epithelial mesenchymal transition and proliferation associated with the immune clusters and mutually exclusive in breast cancers. Here, we describe immune clusters which improve the prognostic accuracy of immune contexture in breast cancer. Our discovery of a novel independent prognostic factor in breast cancer highlights a correlation between tumor phenotype and immune contexture.
Background Abnormal DNA methylation is observed as an early event in breast carcinogenesis. However, how such alterations arise is still poorly understood. microRNAs (miRNAs) regulate gene expression at the post-transcriptional level and play key roles in various biological processes. Here, we integrate miRNA expression and DNA methylation at CpGs to study how miRNAs may affect the breast cancer methylome and how DNA methylation may regulate miRNA expression. Methods miRNA expression and DNA methylation data from two breast cancer cohorts, Oslo2 (n = 297) and The Cancer Genome Atlas (n = 439), were integrated through a correlation approach that we term miRNA-methylation Quantitative Trait Loci (mimQTL) analysis. Hierarchical clustering was used to identify clusters of miRNAs and CpGs that were further characterized through analysis of mRNA/protein expression, clinicopathological features, in silico deconvolution, chromatin state and accessibility, transcription factor binding, and long-range interaction data. Results Clustering of the significant mimQTLs identified distinct groups of miRNAs and CpGs that reflect important biological processes associated with breast cancer pathogenesis. Notably, two major miRNA clusters were related to immune or fibroblast infiltration, hence identifying miRNAs associated with cells of the tumor microenvironment, while another large cluster was related to estrogen receptor (ER) signaling. Studying the chromatin landscape surrounding CpGs associated with the estrogen signaling cluster, we found that miRNAs from this cluster are likely to be regulated through DNA methylation of enhancers bound by FOXA1, GATA2, and ER-alpha. Further, at the hub of the estrogen cluster, we identified hsa-miR-29c-5p as negatively correlated with the mRNA and protein expression of DNA methyltransferase DNMT3A, a key enzyme regulating DNA methylation. We found deregulation of hsa-miR-29c-5p already present in pre-invasive breast lesions and postulate that hsa-miR-29c-5p may trigger early event abnormal DNA methylation in ER-positive breast cancer. Conclusions We describe how miRNA expression and DNA methylation interact and associate with distinct breast cancer phenotypes.
Sentinel lymph nodes are the first nodes draining the lymph from a breast and could reveal early changes in the host immune system upon dissemination of breast cancer cells. To investigate this, we performed single‐cell immune profiling of lymph nodes with and without metastatic cells. Whereas no significant changes were observed for B‐cell and natural killer (NK)‐cell subsets, metastatic lymph nodes had a significantly increased frequency of CD8 T cells and a skewing toward an effector/memory phenotype of CD4 and CD8 T cells, suggesting an ongoing immune response. Additionally, metastatic lymph nodes had an increased frequency of TIGIT (T‐cell immunoreceptor with Ig and ITIM domains)‐positive T cells with suppressed TCR signaling compared with non‐metastatic nodes, indicating exhaustion of effector T cells, and an increased frequency of regulatory T cells (Tregs) with an activated phenotype. T‐cell alterations correlated with the percentage of metastatic tumor cells, reflecting the presence of metastatic tumor cells driving T effector cells toward exhaustion and promoting immunosuppression by recruitment or increased differentiation toward Tregs. These results show that immune suppression occurs already in early stages of tumor progression.
Somatic copy number alterations are a frequent sign of genome instability in cancer. A precise characterization of the genome architecture would reveal underlying instability mechanisms and provide an instrument for outcome prediction and treatment guidance. Here we show that the local spatial behavior of copy number profiles conveys important information about this architecture. Six filters were defined to characterize regional traits in copy number profiles, and the resulting Copy Aberration Regional Mapping Analysis (CARMA) algorithm was applied to tumors in four breast cancer cohorts (n = 2919). The derived motifs represent a layer of information that complements established molecular classifications of breast cancer. A score reflecting presence or absence of motifs provided a highly significant independent prognostic predictor. Results were consistent between cohorts. The nonsitespecific occurrence of the detected patterns suggests that CARMA captures underlying replication and repair defects and could have a future potential in treatment stratification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.