This study examined the effects of 6 weeks of moderate- (MD) and high-intensity endurance training (HD) and resistance training (RD) on the vasorelaxation responsiveness of the aorta, iliac, and femoral vessels in type 1 diabetic (D) rats. Vasorelaxation to acetylcholine was modeled as a mono-exponential function. A potential mediator of vasorelaxation, endothelial nitric oxide synthase (e-NOS) was determined by Western blots. Vessel lumen-to-wall ratios were calculated from H&E stains. The vasorelaxation time-constant (τ) (s) was smaller in control (C) (7.2±3.7) compared to D (9.1±4.4) and it was smaller in HD (5.4±1.5) compared to C, D, RD (8.3±3.7) and MD (8.7±3.8) (p<0.05). The rate of vasorelaxation (%·s−1) was larger in HD (2.7±1.2) compared to C (2.0±1.2), D (2.0±1.5), RD (2.0±1.0), and MD (2.0±1.2) (p<0.05). τ vasorelaxation was smaller in the femoral (6.9±3.7) and iliac (6.9±4.7) than the aorta (9.0±5.0) (p<0.05). The rate of vasorelaxation was progressively larger from the femoral (3.1±1.4) to the iliac (2.0±0.9) and to the aorta (1.3±0.5) (p<0.05). e-NOS content (% of positive control) was greater in HD (104±90) compared to C (71±64), D (85±65), RD (69±43), and MD (76±44) (p<0.05). e-NOS normalized to lumen-to-wall ratio (%·mm−1) was larger in the femoral (11.7±11.1) compared to the aorta (3.2±1.9) (p<0.05). Although vasorelaxation responses were vessel-specific, high-intensity endurance training was the most effective exercise modality in restoring the diabetes-related loss of vascular responsiveness. Changes in the vasoresponsiveness seem to be endothelium-dependent as evidenced by the greater e-NOS content in HD and the greater normalized e-NOS content in the smaller vessels.
The endoplasmic reticulum (ER)-mitochondria encounter structure (ERMES) is a protein complex that physically tethers the two organelles to each other and creates the physical basis for communication between them. ERMES functions in lipid exchange between the ER and mitochondria, protein import into mitochondria, and maintenance of mitochondrial morphology and genome. Here, we report that ERMES is also required for iron homeostasis. Loss of ERMES components activates an Aft1-dependent iron deficiency response even in iron-replete conditions, leading to accumulation of excess iron inside the cell. This function is independent of known ERMES roles in calcium regulation, phospholipid biosynthesis, or effects on mitochondrial morphology. A mutation in the vacuolar protein sorting 13 () gene that rescues the glycolytic phenotype of ERMES mutants suppresses the iron deficiency response and iron accumulation. Our findings reveal that proper communication between the ER and mitochondria is required for appropriate maintenance of cellular iron levels.
The rate of adjustment of endothelium-dependent vasorelaxation was examined in the aorta, iliac and femoral arteries of eight control and eight diabetic rats with and without supplementation with vitamin C. Vessels were constricted using 10(-5) M phenylephrine (PE) and relaxed with 10(-4) M acetylcholine (ACh condition) or 10(-4) M ACh plus 10(-4) M vitamin C (ACh + vitamin C condition) in a myography system. Vasorelaxation was modelled as a mono-exponential function using a non-linear regression analysis. The adjustment (τ) of vasorelaxation was faster in control (6.6 ± 3.2 s) compared to diabetic rats (8.4 ± 3.4 s) (p < 0.05). The time-to-steady-state tended to be shorter in control (32.0 ± 13.9 s) compared to diabetic rats (38.0 ± 15.0 s) (p = 0.1). ACh + vitamin C did not speed the vasorelaxation response. The τ for vasorelaxation was shorter in the femoral (6.5 ± 2.7 s) and iliac (6.8 ± 2.5 s) compared to the aorta (9.2 ± 4.2 s) (p < 0.05). The rate of vasorelaxation was greater in the femoral (3.2 ± 1.4%·s(-1)) compared to the iliac (2.0 ± 1.0%·s(-1)) and aorta (1.1 ± 0.4%·s(-1)) in both groups and in the iliac compared to the aorta (p < 0.05) in the control group. In conclusion, the vasorelaxation response was vessel specific with a slower rate of adjustment in diabetic compared to control animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.